Patent Nash equilibria in symmetric strictly competitive games

被引:1
|
作者
Bahel, Eric [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Econ, Blacksburg, VA 24061 USA
关键词
Symmetric; Zero-sum; Nash equilibrium; Latent; Patent;
D O I
10.1016/j.econlet.2021.109733
中图分类号
F [经济];
学科分类号
02 ;
摘要
This work refines the notion of Nash equilibrium in the case of symmetric strictly competitive games. We define a (complete and typically intransitive) binary relation allowing to identify the so-called latent actions, for which there exists a maximal tree whose nodes are all preferred to the considered action. We prove the existence of patent Nash equilibria (obtained after iterated elimination of latent actions) and then describe the configurations that may arise when the two players have four (or less) actions available. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Similarity Nash Equilibria in Statistical Games
    Argenziano, Rossella
    Gilboa, Itzhak
    AMERICAN ECONOMIC JOURNAL-MICROECONOMICS, 2023, 15 (03) : 354 - 386
  • [32] APPROXIMATION OF NASH EQUILIBRIA IN BAYESIAN GAMES
    Armantier, Olivier
    Florens, Jean-Pierre
    Richard, Jean-Francois
    JOURNAL OF APPLIED ECONOMETRICS, 2008, 23 (07) : 965 - 981
  • [33] On the performances of Nash equilibria in isolation games
    Vittorio Bilò
    Michele Flammini
    Gianpiero Monaco
    Luca Moscardelli
    Journal of Combinatorial Optimization, 2011, 22 : 378 - 391
  • [34] Poor convexity and Nash equilibria in games
    Tadeusz Radzik
    International Journal of Game Theory, 2014, 43 : 169 - 192
  • [35] Nash equilibria in location games on a network
    Mercedes Pelegrín
    Blas Pelegrín
    OR Spectrum, 2017, 39 : 775 - 791
  • [36] Abstracting Nash equilibria of supermodular games
    Francesco Ranzato
    Formal Methods in System Design, 2018, 53 : 259 - 285
  • [37] Approximate Nash Equilibria in Bimatrix Games
    Boryczka, Urszula
    Juszczuk, Przemyslaw
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II: THIRD INTERNATIONAL CONFERENCE, ICCCI 2011, 2011, 6923 : 485 - 494
  • [38] Existence of Nash equilibria in large games
    Noguchi, Mitsunori
    JOURNAL OF MATHEMATICAL ECONOMICS, 2009, 45 (1-2) : 168 - 184
  • [39] On Pure Nash Equilibria in Stochastic Games
    Das, Ankush
    Krishna, Shankara Narayanan
    Manasa, Lakshmi
    Trivedi, Ashutosh
    Wojtczak, Dominik
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 359 - 371
  • [40] On the performances of Nash equilibria in isolation games
    Bilo, Vittorio
    Flammini, Michele
    Monaco, Gianpiero
    Moscardelli, Luca
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 378 - 391