Jordan-Holder, modularity and distributivity in non-commutative algebra

被引:4
|
作者
Borceux, Francis
Grandis, Marco
机构
[1] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[2] Univ Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
D O I
10.1016/j.jpaa.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study of lattices of subgroups or subrings adequate for non-commutative homological algebra can be pursued in a setting of weakly exact categories, which extend the Puppe-exact ones [D. Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann. 148 (1962) 1-30; B. Mitchell, Theory of Categories, Academic Press, New York, 1965; P. Freyd, A. Scedrov, Categories, Allegories, North-Holland Publishing Co., Amsterdam, 1990] and the semi-abelian ones [G. Janelidze, L. Marki, W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002) 367-386; F. Borceux, A survey of semi-abelian categories, in: Galois Theory, Hopf Algebras, and Semiabelian Categories, in: Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, pp. 27-60; F. Borceux, D. Bourn, Mal'cev, Protomodular, homological and semi-abelian categories, in: Mathematics and its Applications, vol. 566, Kluwer Academic Publishers, Dordrecht, 2004], and are essentially based on a notion of gamma-category introduced by Burgin [M.S. Burgin, Categories with involution and correspondences in gamma-categories, Tr. Mosk. Mat. Obs. 22 (1970) 161-228; Trans. Moscow Math. Soc. 22 (1970) 181-257]. In this context, subobjects form w-modular w-lattices, equipped with a normality relation. The free w-modular w-lattice generated by two chains with normality conditions is determined and proved to be weakly distributive, by a construction inspired by the well-known Birkhoff theorem for free modular lattices [G. Birkhoff, Lattice Theory, 3rd ed., in: Amer. Math. Soc. Coll. Publ., vol. 25, 1973]. We show that this theorem is relevant for the study of double filtrations, much in the same way as the Birkhoff theorem in the commutative case; similarly, it should be of use in the study of spectral sequences. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:665 / 689
页数:25
相关论文
共 50 条
  • [31] A combinatorial non-commutative Hopf algebra of graphs
    Duchamp, Gerard H. E.
    Foissy, Loic
    Nguyen Hoang-Nghia
    Manchon, Dominique
    Tanasa, Adrian
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 355 - 370
  • [32] DEPTH, HEIGHT AND LOCALIZATIONS IN NON-COMMUTATIVE ALGEBRA
    RAYNAUD, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) : 199 - 215
  • [33] A combinatorial non-commutative Hopf algebra of graphs
    1600, Discrete Mathematics and Theoretical Computer Science (16):
  • [34] The Jordan-Holder theorem for monoids with group action
    Sebandal, Alfilgen
    Vilela, Jocelyn
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [35] A Jordan-Holder Theorem for differential algebraic groups
    Cassidy, Phyllis J.
    Singer, Michael F.
    JOURNAL OF ALGEBRA, 2011, 328 (01) : 190 - 217
  • [36] MULTIPLICITY IN JORDAN-HOLDER SERIES OF VERMA MODULES
    DEODHAR, VV
    LEPOWSKY, J
    JOURNAL OF ALGEBRA, 1977, 49 (02) : 512 - 524
  • [37] JORDAN-HOLDER SERIES AND PRINCIPLES OF A LIE GROUP
    KUMPERA, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1980, 15 (03) : 307 - 353
  • [38] A Jordan-Holder type theorem for supercharacter theories
    Burkett, Shawn T.
    JOURNAL OF GROUP THEORY, 2020, 23 (03) : 399 - 414
  • [39] JORDAN-HOLDER THEOREM FOR MODULES OF INTEGRAL DEVIATION
    LEMONNIER, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (01): : 17 - 20
  • [40] ZASSENHAUS THEOREM SUPERSEDES THE JORDAN-HOLDER THEOREM
    ISBELL, JR
    ADVANCES IN MATHEMATICS, 1979, 31 (01) : 101 - 103