Jordan-Holder, modularity and distributivity in non-commutative algebra

被引:4
|
作者
Borceux, Francis
Grandis, Marco
机构
[1] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[2] Univ Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
D O I
10.1016/j.jpaa.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study of lattices of subgroups or subrings adequate for non-commutative homological algebra can be pursued in a setting of weakly exact categories, which extend the Puppe-exact ones [D. Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann. 148 (1962) 1-30; B. Mitchell, Theory of Categories, Academic Press, New York, 1965; P. Freyd, A. Scedrov, Categories, Allegories, North-Holland Publishing Co., Amsterdam, 1990] and the semi-abelian ones [G. Janelidze, L. Marki, W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002) 367-386; F. Borceux, A survey of semi-abelian categories, in: Galois Theory, Hopf Algebras, and Semiabelian Categories, in: Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, pp. 27-60; F. Borceux, D. Bourn, Mal'cev, Protomodular, homological and semi-abelian categories, in: Mathematics and its Applications, vol. 566, Kluwer Academic Publishers, Dordrecht, 2004], and are essentially based on a notion of gamma-category introduced by Burgin [M.S. Burgin, Categories with involution and correspondences in gamma-categories, Tr. Mosk. Mat. Obs. 22 (1970) 161-228; Trans. Moscow Math. Soc. 22 (1970) 181-257]. In this context, subobjects form w-modular w-lattices, equipped with a normality relation. The free w-modular w-lattice generated by two chains with normality conditions is determined and proved to be weakly distributive, by a construction inspired by the well-known Birkhoff theorem for free modular lattices [G. Birkhoff, Lattice Theory, 3rd ed., in: Amer. Math. Soc. Coll. Publ., vol. 25, 1973]. We show that this theorem is relevant for the study of double filtrations, much in the same way as the Birkhoff theorem in the commutative case; similarly, it should be of use in the study of spectral sequences. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:665 / 689
页数:25
相关论文
共 50 条
  • [1] Comparability, Distributivity and Non-commutative φ-rings
    Lomp, Christian
    Sant'Ana, Alveri
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 205 - +
  • [2] The Jordan-Holder Theorem
    Riccardi, Marco
    FORMALIZED MATHEMATICS, 2007, 15 (02): : 35 - 51
  • [3] On the theorem of Jordan-Holder
    Ore, Oystein
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1937, 41 (1-3) : 266 - 275
  • [4] JORDAN-HOLDER THEOREM
    WATTS, CE
    PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (02) : 731 - &
  • [5] JORDAN-HOLDER THEOREM
    GOSEKI, Z
    PROCEEDINGS OF THE JAPAN ACADEMY, 1976, 52 (10): : 555 - 558
  • [6] JORDAN-HOLDER GROUPS
    MULLER, E
    MUTZBAUER, O
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 111 - 127
  • [7] The non-commutative Weil algebra
    A. Alekseev
    E. Meinrenken
    Inventiones mathematicae, 2000, 139 : 135 - 172
  • [8] The non-commutative Weil algebra
    Alekseev, A
    Meinrenken, E
    INVENTIONES MATHEMATICAE, 2000, 139 (01) : 135 - 172
  • [9] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [10] Semibricks and the Jordan-Holder property
    Wang, Li
    Wei, Jiaqun
    Zhang, Haicheng
    Zhang, Peiyu
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,