The complexity of reachability in parametric Markov decision processes

被引:11
|
作者
Junges, Sebastian [1 ]
Katoen, Joost-Pieter [2 ]
Perez, Guillermo A. [3 ]
Winkler, Tobias [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Rhein Westfal TH Aachen, Aachen, Germany
[3] Univ Antwerp, Antwerp, Belgium
基金
欧洲研究理事会;
关键词
Parametric Markov decision processes; Formal verification; Existential theory of the reals; Computational complexity; Parameter synthesis; SYSTEMS; MODELS;
D O I
10.1016/j.jcss.2021.02.006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the complexity of reachability decision problems for parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set of parameters. In particular, we study the complexity of finding values for these parameters such that the induced MDP satisfies some maximal or minimal reachability probability constraints. We discuss different variants depending on the comparison operator in the constraints and the domain of the parameter values. We improve all known lower bounds for this problem, and notably provide ETR-completeness results for distinct variants of this problem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 210
页数:28
相关论文
共 50 条
  • [31] Solving Markov Decision Processes with Reachability Characterization from Mean First Passage Times
    Debnath, Shoubhik
    Liu, Lantao
    Sukhatme, Gaurav
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7063 - 7070
  • [32] THE COMPLEXITY OF REACHABILITY IN DISTRIBUTED COMMUNICATING PROCESSES
    REIF, JH
    SMOLKA, SA
    ACTA INFORMATICA, 1988, 25 (03) : 333 - 354
  • [33] Reachability in Parametric Interval Markov Chains Using Constraints
    Bart, Anicet
    Delahaye, Benoit
    Lime, Didier
    Monfroy, Eric
    Truchet, Charlotte
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2017), 2017, 10503 : 173 - 189
  • [34] Reachability in parametric Interval Markov Chains using constraints
    Bart, Anicet
    Delahaye, Benoit
    Fournier, Paulin
    Lime, Didher
    Monfroy, Eric
    Truchet, Charlotte
    THEORETICAL COMPUTER SCIENCE, 2018, 747 : 48 - 74
  • [35] Reachability questions in piecewise deterministic Markov processes
    Bujorianu, ML
    Lygeros, J
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2003, 2623 : 126 - 140
  • [36] Optimization of Parametric Policies of Markov Decision Processes under a Variance Criterion
    Xia, Li
    2016 13TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS (WODES), 2016, : 332 - 337
  • [37] Planning in Markov Decision Processes with Gap-Dependent Sample Complexity
    Jonsson, Anders
    Kaufmann, Emilie
    Menard, Pierre
    Domingues, Omar Darwiche
    Leurent, Edouard
    Valko, Michal
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [38] Reducing Computational Complexity in Markov Decision Processes using Abstract Actions
    Garcia-Hernandez, Ma. de Guadalupe
    Ruiz-Pinales, Jose
    Reyes-Ballesteros, Alberto
    Onaindia, Eva
    Avina-Cervantes, J. Gabriel
    PROCEEDINGS OF THE SPECIAL SESSION OF THE SEVENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE - MICAI 2008, 2008, : 256 - +
  • [39] Maximal Cost-Bounded Reachability Probability on Continuous-Time Markov Decision Processes
    Fu, Hongfei
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, 2014, 8412 : 73 - 87
  • [40] Markov decision processes
    White, D.J.
    Journal of the Operational Research Society, 1995, 46 (06):