PRIME IDEAL FACTORIZATION IN A NUMBER FIELD VIA NEWTON POLYGONS

被引:1
|
作者
El Fadil, Lhoussain [1 ,2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874, Atlas Fes, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874 Atlas Fes, Fes, Morocco
关键词
prime factorization; valuation; phi-expansion; Newton polygon;
D O I
10.21136/CMJ.2021.0516-19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field defined by an irreducible polynomial F (X) is an element of Z[X] and Z(K) its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F (X) that guarantee the existence of exactly r prime ideals of Z(K) lying above p, where F (X) factors into powers of r monic irreducible polynomials in F-p[X]. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of Z(K) lying above p. We further specify for every prime ideal of Z(K) lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 50 条
  • [21] Multiplier ideals of plane curve singularities via Newton polygons
    Perez, Pedro D. Gonzalez
    Villa, Manuel Gonzalez
    Duran, Carlos R. Guzman
    Buces, Miguel Robredo
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1142 - 1162
  • [22] Factoring bivariate polynomials with integer coefficients via Newton polygons
    Crvenkovic, Sinisa
    Pavkov, Ivan
    FILOMAT, 2013, 27 (02) : 215 - 226
  • [23] Prime number factorization and degree of coherence of speckled light beams
    Cao, Tianyu
    Liu, Xin
    Chen, Qian
    Ponomarenko, Sergey a.
    Cai, Yangjian
    Liang, Chunhao
    OPTICS LETTERS, 2024, 49 (18) : 5232 - 5235
  • [24] Parallel Nonnegative Matrix Factorization via Newton Iteration
    Flatz, Markus
    Vajtersic, Marian
    PARALLEL PROCESSING LETTERS, 2016, 26 (03)
  • [25] COVARIANCE FACTORIZATION VIA NEWTON-RAPHSON ITERATION
    ANDERSON, BDO
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (02) : 183 - 187
  • [26] PRIME MATRIX IDEAL YIELDS A SKEW FIELD
    MALCOLMSON, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 18 (OCT): : 221 - 233
  • [27] GENERATION OF THE SYMMETRIC FIELD BY NEWTON POLYNOMIALS IN PRIME CHARACTERISTIC
    Monge, Maurizio
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (02) : 729 - 749
  • [28] A novel access control method using Morton number and prime factorization
    Chang, HKC
    Hwang, JJ
    Liu, HH
    INFORMATION SCIENCES, 2000, 130 (1-4) : 23 - 40
  • [29] THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD OF PRIME DEGREE
    Pollack, Paul
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 177 - 193
  • [30] Prime number factorization with light beams carrying orbital angular momentum
    Li, Xiaofei
    Liu, Xin
    Wu, Quanying
    Zeng, Jun
    Cai, Yangjian
    Ponomarenko, Sergey A.
    Liang, Chunhao
    APL PHOTONICS, 2024, 9 (04)