Convexities and approximative compactness and continuity of metric projection in Banach spaces

被引:24
|
作者
Zhang, Zihou [1 ,2 ]
Shi, Zhongrui [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ Engn Sci, Coll Adv Vocat Technol, Shanghai 200437, Peoples R China
基金
中国国家自然科学基金;
关键词
Metric projection; Proximinal set; Approximative compactness; Upper semi-continuity; Convexity; CONVERGENCE;
D O I
10.1016/j.jat.2009.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the continuities of the metric projection in a nonreflexive Banach space X, which improve the results in [X.N. Fang, J.H. Wang, Convexity and continuity of metric projection, Math. Appl. 14 (1) (2001) 47-51; P.D. Liu, Y.L. Hou, A convergence theorem of martingales in the limit, Northeast. Math. J. 6 (2) (1990) 227-234; H.J. Wang, Some results on the continuity of metric projections, Math. Appl. 8 (1) (1995) 80-84]. Under the assumption that X has some convexities, we discuss the relationship between approximative compactness of a subset A of X and continuity of the metric projection P-A. We also give a representation theorem for the metric projection to a hyperplane in dual space X* and discuss its continuity. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:802 / 812
页数:11
相关论文
共 50 条
  • [31] WEAK SEQUENTIAL CONTINUITY OF METRIC PROJECTION IN LP SPACES
    LAMBERT, JM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 170 - &
  • [32] CONTINUITY OF MULTIVALUED METRIC PROJECTION IN LINEAR NORMED SPACES
    OSHMAN, EV
    NEVESENKO, NV
    DOKLADY AKADEMII NAUK SSSR, 1975, 223 (05): : 1064 - 1066
  • [33] Approximative Compactness and Radon-Nikodym Property in w* Nearly Dentable Banach Spaces and Applications
    Shang, Shaoqiang
    Cui, Yunan
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [34] SMOOTHNESS AND APPROXIMATIVE COMPACTNESS IN ORLICZ FUNCTION SPACES
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 26 - 38
  • [35] APPROXIMATIVE RECONSTRUCTION PROPERTY IN BANACH SPACES
    Tara
    Shekhar, Chander
    Rathore, G. S.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (01): : 1 - 15
  • [36] On Approximative Atomic Decompositions in Banach Spaces
    Kaushik, S. K.
    Sharma, S. K.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (03): : 293 - 301
  • [37] COMPACTNESS AND SEQUENTAIL COMPACTNESS IN METRIC SPACES
    SIMON, LM
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (10): : 1238 - &
  • [38] Compactness in Metric Spaces
    Nakasho, Kazuhisa
    Narita, Keiko
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2016, 24 (03): : 167 - 172
  • [39] CONTINUITY OF METRIC PROJECTION ONTO SOME CLASSES OF SUBSPACES IN BANACH SPACE
    OSHMAN, EB
    DOKLADY AKADEMII NAUK SSSR, 1970, 195 (03): : 555 - &