Equilibrium states of iterated random maps arising in evolutionary algorithms

被引:0
|
作者
Hernandez, G [1 ]
Niño, F [1 ]
Quas, A [1 ]
Dasgupta, D [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
evolutionary algorithms; iterated random maps; ergodic theory; equilibrium states;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the equilibrium states and the dynamical entropy of iterated random maps that arise in modeling a class of evolutionary algorithms.
引用
收藏
页码:1052 / 1055
页数:4
相关论文
共 50 条
  • [21] On Evolutionary Algorithms for Large Cliques in Random Graphs
    Javidi, Mohammad M.
    Mehrabi, Saeed
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 22 (S11): : 53 - 60
  • [22] Sensitiveness of Evolutionary Algorithms to the Random Number Generator
    Cardenas-Montes, Miguel
    Vega-Rodriguez, Miguel A.
    Gomez-Iglesias, Antonio
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT I, 2011, 6593 : 371 - +
  • [23] Performance of evolutionary algorithms on random decomposable problems
    Pelikan, Martin
    Sastry, Kumara
    Butz, Martin V.
    Goldberg, David E.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 788 - 797
  • [24] Evolutionary algorithms with neighborhood cooperativeness according to neural maps
    Villmann, T
    Villmann, B
    Slowik, V
    NEUROCOMPUTING, 2004, 57 : 151 - 169
  • [25] Detecting resonances in conservative maps using evolutionary algorithms
    Petalas, Y. G.
    Antonopoulos, C. G.
    Bountis, T. C.
    Vrahatis, M. N.
    PHYSICS LETTERS A, 2009, 373 (03) : 334 - 341
  • [26] Twelve monotonicity conditions arising from algorithms for equilibrium problems
    Bigi, Giancarlo
    Passacantando, Mauro
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (02): : 323 - 337
  • [27] Equilibrium states of interval maps for hyperbolic potentials
    Li, Huaibin
    Rivera-Letelier, Juan
    NONLINEARITY, 2014, 27 (08) : 1779 - 1804
  • [28] Statistical properties of equilibrium states for rational maps
    Haydn, N
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1371 - 1390
  • [29] Equilibrium states for S-unimodal maps
    Bruin, H
    Keller, G
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 765 - 789
  • [30] Equilibrium states for factor maps between subshifts
    Feng, De-Jun
    ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2470 - 2502