Equilibrium states of iterated random maps arising in evolutionary algorithms

被引:0
|
作者
Hernandez, G [1 ]
Niño, F [1 ]
Quas, A [1 ]
Dasgupta, D [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
evolutionary algorithms; iterated random maps; ergodic theory; equilibrium states;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the equilibrium states and the dynamical entropy of iterated random maps that arise in modeling a class of evolutionary algorithms.
引用
收藏
页码:1052 / 1055
页数:4
相关论文
共 50 条
  • [1] ON CONVERGENCE OF ITERATED RANDOM MAPS
    LIUKKONEN, JR
    LEVINE, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (06) : 1752 - 1762
  • [2] Random perturbations of iterated maps
    SalazarAnaya, G
    Urias, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) : 3641 - 3643
  • [3] Equilibrium states for random non-uniformly expanding maps
    Arbieto, A
    Matheus, C
    Oliveira, K
    NONLINEARITY, 2004, 17 (02) : 581 - 593
  • [4] ON RANDOM ITERATED FUNCTION SYSTEMS WITH GREYSCALE MAPS
    Demers, Matthew
    Kunze, Herb
    La Torre, Davide
    IMAGE ANALYSIS & STEREOLOGY, 2012, 31 (02): : 109 - 120
  • [5] Quenched and annealed equilibrium states for random Ruelle expanding maps and applications
    Stadlbauer, Manuel
    Varandas, Paulo
    Zhang, Xuan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 3150 - 3192
  • [6] Correlation spectrum of quenched and annealed equilibrium states for random expanding maps
    Baladi, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) : 671 - 700
  • [7] Correlation Spectrum of Quenched and Annealed Equilibrium States for Random Expanding Maps
    Viviane Baladi
    Communications in Mathematical Physics, 1997, 186 : 671 - 700
  • [8] Uniqueness and stability of equilibrium states for random non-uniformly expanding maps
    Bilbao, R.
    Ramos, V
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (08) : 2589 - 2623
  • [9] On iterated extensions of number fields arising from quadratic polynomial maps
    Yamamoto, Kota
    JOURNAL OF NUMBER THEORY, 2020, 209 : 289 - 311
  • [10] Homogenization of iterated singular integrals with applications to random quasiconformal maps
    Astala, Kari
    Rohde, Steffen
    Saksman, Eero
    Tao, Terence
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (07) : 2285 - 2336