A VORONOVSKAYA-TYPE THEOREM FOR A GENERAL CLASS OF DISCRETE OPERATORS

被引:30
|
作者
Bardaro, Carlo [1 ]
Mantellini, Ilaria [1 ]
机构
[1] Univ Perugia, Dept Math & Informat, I-06123 Perugia, Italy
关键词
Voronovskaya-type formula; moments; generalized sampling operators; discrete operators; MEYER-KONIG; APPROXIMATION; POLYNOMIALS;
D O I
10.1216/RMJ-2009-39-5-1411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we introduce a general class of discrete operators, not necessarily positive and we give a Voronovskaya-type formula for this class. Applications to generalized sampling-type operators and to a further generalization of the classical Szasz-Mirak'jan operator are given. Finally a survey on Voronovskaya's formula for classical discrete operators is treated.
引用
收藏
页码:1411 / 1442
页数:32
相关论文
共 50 条
  • [31] Voronovskaya type results for special sequences of operators
    Acu, Ana-Maria
    Dancs, Madalina
    Heilmann, Margareta
    Pasca, Vlad
    Rasa, Ioan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [32] Some Approximation Theorems for a General Class of Discrete Type Operators in Spaces with a Polynomial Weight
    Magnucka-Blandzi, Ewa
    Walczak, Zbigniew
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [33] Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain–Durrmeyer operators of blending type
    Arun Kajla
    Sheetal Deshwal
    P. N. Agrawal
    Analysis and Mathematical Physics, 2019, 9 : 1241 - 1263
  • [34] A quantitative asymptotic formula for a general class of discrete operators
    Bardaro, Carlo
    Mantellini, Ilaria
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (10) : 2859 - 2870
  • [35] QUANTITATIVE VORONOVSKAYA TYPE RESULTS FOR A SEQUENCE OF STANCU TYPE OPERATORS
    Agrawal, P. N.
    Acu, Ana-Maria
    Bhardwaj, Neha
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1519 - 1532
  • [36] Quantitative Voronovskaya and Gruss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type
    Kajla, Arun
    Deshwal, Sheetal
    Agrawal, P. N.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) : 1241 - 1263
  • [37] Generalized Voronovskaya theorem and the convergence of power series of positive linear operators
    Garoiu, Stefan
    Paltanea, Radu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [38] THE VORONOVSKAYA THEOREM FOR SOME LINEAR POSITIVE OPERATORS IN EXPONENTIAL WEIGHT SPACES
    Rempulska, L.
    Skorupka, M.
    PUBLICACIONS MATEMATIQUES, 1997, 41 (02) : 519 - 526
  • [39] Voronovskaya Type Results and Operators Fixing Two Functions
    Acu, Ana Maria
    Maduta, Alexandra-Ioana
    Rasa, Ioan
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 395 - 410
  • [40] Voronovskaya type asymptotic approximation by modified Gamma operators
    Izgi, Aydin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8061 - 8067