Effect of inoculum density on human-induced pluripotent stem cell expansion in 3D bioreactors

被引:14
|
作者
Greuel, Selina [1 ]
Hanci, Guengoer [1 ]
Boehme, Mike [1 ]
Miki, Toshio [2 ]
Schubert, Frank [3 ]
Sittinger, Michael [4 ]
Mandenius, Carl-Fredrik [5 ]
Zeilinger, Katrin [1 ]
Freyer, Nora [1 ]
机构
[1] Charite Univ Med Berlin, Bioreactor Grp, Berlin Brandenburg Ctr Regenerat Therapies BCRT, Berlin, Germany
[2] Univ Southern Calif, Keck Sch Med, Dept Surg, Los Angeles, CA USA
[3] StemCell Syst GmbH, Berlin, Germany
[4] Charite Univ Med Berlin, Dept Rheumatol & Clin Immunol, Berlin Brandenburg Ctr Regenerat Therapies BCRT, Tissue Engn Lab, Berlin, Germany
[5] Linkoping Univ, Dept Phys Chem & Biol IFM, Div Biotechnol, Linkoping, Sweden
关键词
3D culture; bioreactor culture; cell expansion; human-induced pluripotent stem cells; inoculum density; EXTRACORPOREAL LIVER SUPPORT; 3-DIMENSIONAL PERFUSION; GENE-EXPRESSION; SUSPENSION-CULTURE; DIFFERENTIATION; PATIENT; GENERATION; SYSTEMS;
D O I
10.1111/cpr.12604
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Objective For optimized expansion of human-induced pluripotent stem cells (hiPSCs) with regards to clinical applications, we investigated the influence of the inoculum density on the expansion procedure in 3D hollow-fibre bioreactors. Materials and Methods Analytical-scale bioreactors with a cell compartment volume of 3 mL or a large-scale bioreactor with a cell compartment volume of 17 mL were used and inoculated with either 10 x 10(6) or 50 x 10(6) hiPSCs. Cells were cultured in bioreactors over 15 days; daily measurements of biochemical parameters were performed. At the end of the experiment, the CellTiter-Blue (R) Assay was used for culture activity evaluation and cell quantification. Also, cell compartment sections were removed for gene expression and immunohistochemistry analysis. Results The results revealed significantly higher values for cell metabolism, cell activity and cell yields when using the higher inoculation number, but also a more distinct differentiation. As large inoculation numbers require cost and time-extensive pre-expansion, low inoculation numbers may be used preferably for long-term expansion of hiPSCs. Expansion of hiPSCs in the large-scale bioreactor led to a successful production of 5.4 x 10(9) hiPSCs, thereby achieving sufficient cell amounts for clinical applications. Conclusions In conclusion, the results show a significant effect of the inoculum density on cell expansion, differentiation and production of hiPSCs, emphasizing the importance of the inoculum density for downstream applications of hiPSCs. Furthermore, the bioreactor technology was successfully applied for controlled and scalable production of hiPSCs for clinical use.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Integrated Organ-on-a-chip with Human-induced Pluripotent Stem Cells Directional Differentiation for 3D Skin Model Generation
    Zhang Luo
    Chaihong Gong
    Xiaowei Mao
    Zhe Wang
    Zhifan Liu
    Yali Ben
    Weiying Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37 : 1271 - 1278
  • [32] 3D Bioprinting Human-Induced Pluripotent Stem Cells and Drug-Releasing Microspheres to Produce Responsive Neural Tissues
    De la Vega, Laura
    Abelseth, Laila
    Sharma, Ruchi
    Trivino-Paredes, Juan
    Restan, Milena
    Willerth, Stephanie M.
    ADVANCED NANOBIOMED RESEARCH, 2021, 1 (08):
  • [33] Integrated Organ-on-a-chip with Human-induced Pluripotent Stem Cells Directional Differentiation for 3D Skin Model Generation
    罗章
    GONG Chaihong
    MAO Xiaowei
    WANG Zhe
    LIU Zhifan
    BEN Yali
    张玮莹
    Journal of Wuhan University of Technology(Materials Science), 2022, 37 (06) : 1271 - 1278
  • [34] AThinkful of "Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System" [Letter]
    Rilianawat
    Rinendyaputri, Ratih
    Purwaningtyas, Yoggi Ramadhani
    STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS, 2024, 17 : 1 - 2
  • [35] MicroRNA Profiling of Human-Induced Pluripotent Stem Cells
    Wilson, Kitchener D.
    Venkatasubrahmanyam, Shivkumar
    Jia, Fangjun
    Sun, Ning
    Butte, Atul J.
    Wu, Joseph C.
    STEM CELLS AND DEVELOPMENT, 2009, 18 (05) : 749 - 757
  • [36] Human-Induced Pluripotent Stem Cell Technology: Toward the Future of Personalized Psychiatry
    Alciati, Alessandra
    Reggiani, Angelo
    Caldirola, Daniela
    Perna, Giampaolo
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [37] CHARACTERIZATION OF THE REGENERATIVE POTENTIAL OF HUMAN-INDUCED PLURIPOTENT STEM CELL DERIVED MEGAKARYOCYTES
    Baigger, Anja
    Yuzefovych, Yuliia
    Eicke, Dorothee
    Blasczyk, Rainer
    Figueiredo, Constanca
    HLA, 2017, 89 (06) : 343 - 343
  • [38] Induced pluripotent stem cell-derived hematopoietic stem cell niches as standardized 3D model for human hematopoiesis
    Plantier, Evelia
    Nikolova, Marina
    Toledo, Marcelo A. S.
    Seimiya, Makiko
    Koschmieder, Stephan
    Treutlein, Barbara
    Garcia, Andres Garcia
    Martin, Ivan
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [39] The Effect of Vitamin D3 and Valproic Acid on the Maturation of Human-Induced Pluripotent Stem Cell-Derived Enterocyte-Like Cells
    Leo, Sylvia
    Kato, Yusuke
    Wu, Yumeng
    Yokota, Mutsumi
    Koike, Masato
    Yui, Shiro
    Tsuchiya, Kiichiro
    Shiraki, Nobuaki
    Kume, Shoen
    STEM CELLS, 2023, 41 (08) : 775 - 791
  • [40] 3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Palankar, Raghavendra
    Glaubitz, Michael
    Martens, Ulrike
    Medvedev, Nikolay
    von der Ehe, Marvin
    Felix, Stephan B.
    Muenzenberg, Markus
    Delcea, Mihaela
    ADVANCED HEALTHCARE MATERIALS, 2016, 5 (03) : 335 - 341