Finite Rate Quantized Distributed Optimization with Geometric Convergence

被引:0
|
作者
Lee, Chang-Shen [1 ]
Michelusi, Nicolo [1 ]
Scutari, Gesualdo [2 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
CONSENSUS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies distributed (strongly convex) optimization over multi-agent networks, subject to finite rate communications. We propose the first distributed algorithm achieving geometric convergence to the exact solution of the problem, matching thus the rate of the centralized gradient algorithm (although with different constants). The algorithm combines gradient tracking with a quantized perturbed consensus scheme. The impact on the convergence (rate) of design and network parameters, such as number of bits, algorithm step-size, and network connectivity, is also investigated. Finally, numerical results validate our theoretical findings. They demonstrate the existence of an interesting trade-off among solution accuracy, convergence time and communication cost, defined as the total number of bits transmitted on one link to achieve a target solution error.
引用
收藏
页码:1876 / 1880
页数:5
相关论文
共 50 条
  • [41] Quantized Distributed Gradient Tracking Algorithm With Linear Convergence in Directed Networks
    Xiong, Yongyang
    Wu, Ligang
    You, Keyou
    Xie, Lihua
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (09) : 5638 - 5645
  • [42] Quantized Gradient Descent Algorithm for Distributed Nonconvex Optimization
    Yoshida, Junya
    Hayashi, Naoki
    Takai, Shigemasa
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (10) : 1297 - 1304
  • [43] DISTRIBUTED OPTIMIZATION BASED ON GRADIENT TRACKING REVISITED: ENHANCING CONVERGENCE RATE VIA SURROGATION
    Sun, Ying
    Scutari, Gesualdo
    Daneshmand, Amir
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 354 - 385
  • [44] Online Distributed Learning with Quantized Finite-Time Coordination
    Bastianello, Nicola
    Rikos, Apostolos, I
    Johansson, Karl H.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5026 - 5032
  • [45] RATE OF CONVERGENCE FOR FINITE ELEMENT METHOD
    BABUSKA, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (02) : 304 - &
  • [46] Geometric optimization on spaces of finite frames
    Strawn, Nate
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [47] The Distributed Convergence Classifier Using the Finite Difference
    Kenyeres, Martin
    Kenyeres, Jozef
    Skorpil, Vladislav
    RADIOENGINEERING, 2016, 25 (01) : 148 - 155
  • [48] The geometric rate of convergence of random iteration in the Hutchinson distance
    Rafał Kapica
    Aequationes mathematicae, 2019, 93 : 149 - 160
  • [49] The geometric rate of convergence of random iteration in the Hutchinson distance
    Kapica, Rafal
    AEQUATIONES MATHEMATICAE, 2019, 93 (01) : 149 - 160
  • [50] The rate of convergence of Fourier expansions in the plane: a geometric viewpoint
    Brandolini, L
    Colzani, L
    Iosevich, A
    Travaglini, G
    MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (04) : 709 - 724