A Darling-Erdos-type theorem for standardized random walk summation

被引:0
|
作者
Horvath, L [1 ]
Shao, QM [1 ]
机构
[1] NATL UNIV SINGAPORE, DEPT MATH, SINGAPORE 117548, SINGAPORE
关键词
D O I
10.1112/blms/28.4.425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the random walk summation method which includes, for example, the Borel, Euler, Meyer-Konig and Valiron methods, and obtain a Darling-Erdos-type limit theorem for the maximum of normalized sums defined by random walk summation.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [31] CHERNOFFS THEOREM IN BRANCHING RANDOM-WALK
    BIGGINS, JD
    JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) : 630 - 636
  • [32] A random walk analogue of Levy's theorem
    Fujita, Takahiko
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (02) : 223 - 233
  • [33] A RATIO LIMIT THEOREM FOR SYMMETRIC RANDOM WALK
    KESTEN, H
    JOURNAL D ANALYSE MATHEMATIQUE, 1970, 23 : 199 - &
  • [34] A renewal theorem and supremum of a perturbed random walk
    Damek, Ewa
    Kolodziejek, Bartosz
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [35] Scaling limit theorem for transient random walk in random environment
    Hong, Wenming
    Yang, Hui
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) : 1033 - 1044
  • [36] Polya's Random Walk Theorem Revisited
    Lange, Kenneth
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (10): : 1005 - 1007
  • [37] The Erdos-Renyi-Shepp law of large numbers for ballistic random walk in random environment
    Camargo, Darcy
    Kifer, Yuri
    Zeitouni, Ofer
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2347 - 2381
  • [38] Limiting distribution for the maximal standardized increment of a random walk
    Kabluchko, Zakhar
    Wang, Yizao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (09) : 2824 - 2867
  • [39] An Erdos-Gallai type theorem for uniform hypergraphs
    Davoodi, Akbar
    Gyori, Ervin
    Methuku, Abhishek
    Tompkins, Casey
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 69 : 159 - 162
  • [40] SUMMATION PROCESS OF KOROVKIN TYPE APPROXIMATION THEOREM
    Karakus, Sevda
    Demirci, Kamil
    MISKOLC MATHEMATICAL NOTES, 2011, 12 (01) : 75 - 85