Evaluating landfast sea ice stress and fracture in support of operations on sea ice using SAR interferometry

被引:18
|
作者
Dammann, Dyre O. [1 ,2 ]
Eicken, Hajo [3 ]
Mahoney, Andrew R. [1 ]
Meyer, Franz J. [1 ]
Freymueller, Jeffrey T. [1 ]
Kaufman, Alexander M. [1 ]
机构
[1] Univ Alaska, Geophys Inst, 2156 Koyukuk Dr, Fairbanks, AK 99775 USA
[2] Chalmers Univ Technol, Dept Space Earth & Environm, Horsalsvagen 11, S-41296 Gothenburg, Sweden
[3] Univ Alaska, Int Arctic Res Ctr, 2160 Koyukuk Dr, Fairbanks, AK 99775 USA
基金
美国国家科学基金会;
关键词
Ice roads; Remote sensing; Ice trafficability; Arctic; Synthetic aperture radar interferometry; Ice strain; Landfast ice; Sea ice; ALOS PALSAR; TerraSAR-X; Ice stability; Ice dynamics; TENSILE-STRENGTH; CLIMATE-CHANGE; IN-SITU; SATELLITE; BARROW; VULNERABILITY; DEFORMATION; FRAMEWORK; TRENDS; EXTENT;
D O I
10.1016/j.coldregions.2018.02.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent Arctic warming has led to reduced sea-ice thickness and a more dynamic landfast ice cover with potential widespread consequences for ice users. Here, we develop an approach to assess the small-scale deformation of landfast ice critical to on-ice operations using synthetic aperture radar interferometry (InSAR). InSAR has previously proven successful in determining long-term qualitative climatology of ice deformation around on-ice operations, but is now used to explore its potential for providing quantitative guidance for ice road planning, construction, and maintenance. A validation effort using X-band SAR and high-precision GPS data over Elson Lagoon, Alaska, confirms the ability of InSAR to accurately estimate 3-dimensional sea ice strain values accumulated between SAR image acquisitions, using an inverse model. The inverse model was further applied to L-band InSAR data over the Northstar Island ice road near Prudhoe Bay, Alaska. Assuming an elasto-brittle rheology, the derived strain values yielded a spatial distribution of internal stress consistent with preexisting ice defects and morphology. In several localized regions of the study area, stress values exceeded expected yield stress. Resulting relative fracture intensity potential was shown to conform with local knowledge based on road inspections by engineers, and may be used to guide ice road planning, construction and maintenance efforts. The results presented here demonstrate that InSAR is an accurate tool for estimating landfast ice deformation and stability in support of ice use. The findings may also provide substantial new insights into the mechanics of landfast ice.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [41] Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea
    Steffens, M.
    Granskog, M. A.
    Kaartokallio, H.
    Kuosa, H.
    Luodekar, K.
    Papadimitriou, S.
    Thomas, D. N.
    ANNALS OF GLACIOLOGY, VOL 44, 2006, 2006, 44 : 80 - +
  • [42] Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
    Arndt, Stefanie
    Hoppmann, Mario
    Schmithuesen, Holger
    Fraser, Alexander D.
    Nicolaus, Marcel
    CRYOSPHERE, 2020, 14 (08): : 2775 - 2793
  • [43] Chlorophyll-a in Antarctic Landfast Sea Ice: A First Synthesis of Historical Ice Core Data
    Meiners, K. M.
    Vancoppenolle, M.
    Carnat, G.
    Castellani, G.
    Delille, B.
    Delille, D.
    Dieckmann, G. S.
    Flores, H.
    Fripiat, F.
    Grotti, M.
    Lange, B. A.
    Lannuzel, D.
    Martin, A.
    McMinn, A.
    Nomura, D.
    Peeken, I.
    Rivaro, P.
    Ryan, K. G.
    Stefels, J.
    Swadling, K. M.
    Thomas, D. N.
    Tison, J. -L.
    van der Merwe, P.
    van Leeuwe, M. A.
    Weldrick, C.
    Yang, E. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (11) : 8444 - 8459
  • [44] Landfast sea ice breakouts: Stabilizing ice features, oceanic and atmospheric forcing at Barrow, Alaska
    Jones, Joshua
    Eicken, Hajo
    Mahoney, Andrew
    Rohith, M., V
    Kambhamettu, Chandra
    Fukamachi, Yasushi
    Ohshima, Kay I.
    George, J. Craig
    CONTINENTAL SHELF RESEARCH, 2016, 126 : 50 - 63
  • [45] How fast is landfast sea ice? A study of the attachment and detachment of nearshore ice at Barrow, Alaska
    Mahoney, Andrew
    Eicken, Hajo
    Shapiro, Lewis
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2007, 47 (03) : 233 - 255
  • [46] The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
    Surawy-Stepney, Trystan
    Hogg, Anna E.
    Cornford, Stephen L.
    Wallis, Benjamin J.
    Davison, Benjamin J.
    Selley, Heather L.
    Slater, Ross A. W.
    Lie, Elise K.
    Jakob, Livia
    Ridout, Andrew
    Gourmelen, Noel
    Freer, Bryony I. D.
    Wilson, Sally F.
    Shepherd, Andrew
    CRYOSPHERE, 2024, 18 (03): : 977 - 993
  • [47] Meteoric ice contribution and influence of weather on landfast ice growth in the Gulf of Finland, Baltic Sea
    Uusikivi, Jari
    Granskog, Mats A.
    Sonninen, Eloni
    ANNALS OF GLACIOLOGY, 2011, 52 (57) : 91 - 96
  • [48] Investigation of sea ice and lake ice using Ground-Based SAR tomography
    Yitayew, Temesgen Gebrie
    Ferro-Famil, Laurent
    Eltoft, Torbiorn
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5276 - 5279
  • [49] Linking Regional Winter Sea Ice Thickness and Surface Roughness to Spring Melt Pond Fraction on Landfast Arctic Sea Ice
    Nasonova, Sasha
    Scharien, Randall K.
    Haas, Christian
    Howell, Stephen E. L.
    REMOTE SENSING, 2018, 10 (01):
  • [50] Experiments on sea ice fracture toughness in the Bohai Sea
    Ji, S. (jisy@dlut.edu.cn), 2013, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (24):