Dimensionality reduction with adaptive graph

被引:18
|
作者
Qiao, Lishan [1 ]
Zhang, Limei [1 ]
Chen, Songcan [2 ]
机构
[1] Liaocheng Univ, Dept Math Sci, Liaocheng 252000, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
关键词
Dimensionality reduction; graph construction; face recognition; FACE RECOGNITION;
D O I
10.1007/s11704-013-2234-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph-based dimensionality reduction (DR) methods have been applied successfully in many practical problems, such as face recognition, where graphs play a crucial role in modeling the data distribution or structure. However, the ideal graph is, in practice, difficult to discover. Usually, one needs to construct graph empirically according to various motivations, priors, or assumptions; this is independent of the subsequent DR mapping calculation. Different from the previous works, in this paper, we attempt to learn a graph closely linked with the DR process, and propose an algorithm called dimensionality reduction with adaptive graph (DRAG), whose idea is to, during seeking projection matrix, simultaneously learn a graph in the neighborhood of a prespecified one. Moreover, the pre-specified graph is treated as a noisy observation of the ideal one, and the square Frobenius divergence is used to measure their difference in the objective function. As a result, we achieve an elegant graph update formula which naturally fuses the original and transformed data information. In particular, the optimal graph is shown to be a weighted sum of the pre-defined graph in the original space and a new graph depending on transformed space. Empirical results on several face datasets demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 50 条
  • [21] Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing
    Meng, Meng
    Wei, Jia
    Wang, Jiabing
    Ma, Qianli
    Wang, Xuan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (03) : 793 - 805
  • [22] Dimensionality Reduction via Graph Structure Learning
    Mao, Qi
    Wang, Li
    Goodison, Steve
    Sun, Yijun
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 765 - 774
  • [23] Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing
    Meng Meng
    Jia Wei
    Jiabing Wang
    Qianli Ma
    Xuan Wang
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 793 - 805
  • [24] Unsupervised Adaptive Embedding for Dimensionality Reduction
    Wang, Jingyu
    Xie, Fangyuan
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6844 - 6855
  • [25] Adaptive linear dimensionality reduction for classification
    Lotlikar, R
    Kothari, R
    PATTERN RECOGNITION, 2000, 33 (02) : 185 - 194
  • [26] Flexible and Adaptive Unsupervised Dimensionality Reduction
    Qiang Q.-Y.
    Zhang B.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (11): : 2290 - 2305
  • [27] ANDRomeda: Adaptive nonlinear dimensionality reduction
    Marchette, DJ
    Priebe, CE
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 140 - 146
  • [28] Locally adaptive nonlinear dimensionality reduction
    Hou, Yuexian
    Yang, Hongmin
    He, Pilian
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 554 - +
  • [29] Discriminative Projection Learning With Adaptive Reversed Graph Embedding for Supervised and Semi-Supervised Dimensionality Reduction
    Li, Lin
    Qu, Hongchun
    Li, Zhaoni
    Zheng, Jian
    Guo, Fei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8688 - 8702
  • [30] Graph optimization for unsupervised dimensionality reduction with probabilistic neighbors
    Yang, Zhengguo
    Wang, Jikui
    Li, Qiang
    Yi, Jihai
    Liu, Xuewen
    Nie, Feiping
    APPLIED INTELLIGENCE, 2023, 53 (02) : 2348 - 2361