Optimal chaos control through reinforcement learning

被引:32
|
作者
Gadaleta, S [1 ]
Dangelmayr, G [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
关键词
D O I
10.1063/1.166451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (C) 1999 American Institute of Physics. [S1054-1500(99)00703-X].
引用
收藏
页码:775 / 788
页数:14
相关论文
共 50 条
  • [11] Nonlinear Optimal Control Using Deep Reinforcement Learning
    Bucci, Michele Alessandro
    Semeraro, Onofrio
    Allauzen, Alexandre
    Cordier, Laurent
    Mathelin, Lionel
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 279 - 290
  • [12] Control of chaos in Frenkel-Kontorova model using reinforcement learning*
    Lei, You-Ming
    Han, Yan-Yan
    CHINESE PHYSICS B, 2021, 30 (05)
  • [13] Optimal and Autonomous Control Using Reinforcement Learning: A Survey
    Kiumarsi, Bahare
    Vamvoudakis, Kyriakos G.
    Modares, Hamidreza
    Lewis, Frank L.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) : 2042 - 2062
  • [14] Reinforcement learning for optimal control of low exergy buildings
    Yang, Lei
    Nagy, Zoltan
    Goffin, Philippe
    Schlueter, Arno
    APPLIED ENERGY, 2015, 156 : 577 - 586
  • [15] Reinforcement learning for optimal control of stochastic nonlinear systems
    Zhu, Xinji
    Wang, Yujia
    Wu, Zhe
    AICHE JOURNAL, 2025,
  • [16] Optimal control of ship unloaders using reinforcement learning
    Scardua, LA
    Da Cruz, JJ
    Costa, AHR
    ADVANCED ENGINEERING INFORMATICS, 2002, 16 (03) : 217 - 227
  • [17] Reinforcement Learning and Adaptive Optimal Control of Congestion Pricing
    Nguyen, Tri
    Gao, Weinan
    Zhong, Xiangnan
    Agarwal, Shaurya
    IFAC PAPERSONLINE, 2021, 54 (02): : 221 - 226
  • [18] Inverse Reinforcement Learning in Tracking Control Based on Inverse Optimal Control
    Xue, Wenqian
    Kolaric, Patrik
    Fan, Jialu
    Lian, Bosen
    Chai, Tianyou
    Lewis, Frank L.
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10570 - 10581
  • [19] An Optimal Transfer of Knowledge in Reinforcement Learning through Greedy Approach
    Kumari, Deepika
    Chaudhary, Mahima
    Mishra, Ashish Kumar
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [20] Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
    Angloher G.
    Banik S.
    Benato G.
    Bento A.
    Bertolini A.
    Breier R.
    Bucci C.
    Burkhart J.
    Canonica L.
    D’Addabbo A.
    Di Lorenzo S.
    Einfalt L.
    Erb A.
    v. Feilitzsch F.
    Fichtinger S.
    Fuchs D.
    Garai A.
    Ghete V.M.
    Gorla P.
    Guillaumon P.V.
    Gupta S.
    Hauff D.
    Ješkovský M.
    Jochum J.
    Kaznacheeva M.
    Kinast A.
    Kuckuk S.
    Kluck H.
    Kraus H.
    Langenkämper A.
    Mancuso M.
    Marini L.
    Mauri B.
    Meyer L.
    Mokina V.
    Niedermayer K.
    Olmi M.
    Ortmann T.
    Pagliarone C.
    Pattavina L.
    Petricca F.
    Potzel W.
    Povinec P.
    Pröbst F.
    Pucci F.
    Reindl F.
    Rothe J.
    Schäffner K.
    Schieck J.
    Schönert S.
    Computing and Software for Big Science, 2024, 8 (1)