Combined Beef Thawing Using Response Surface Methodology

被引:4
|
作者
Jin, Jiahui [1 ]
Wang, Xiaodan [1 ]
Han, Yunxiu [1 ]
Cai, Yaoxuan [1 ]
Cai, Yingming [1 ]
Wang, Hongmei [1 ]
Zhu, Lingtao [1 ]
Xu, Liping [1 ]
Zhao, Lei [1 ]
Li, Zhiyuan [1 ]
机构
[1] Jilin Univ, Coll Food Sci & Engn, Changchun 130062, Peoples R China
关键词
microwave; Box-Behnken; thaw; ultrasound; FREEZING RATE; MEAT QUALITY; FROZEN; OPTIMIZATION; ULTRASOUND; EXTRACTION;
D O I
10.17221/138/2016-CJFS
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Based on four thawing methods (still air, still water, ultrasonic wave, and microwave) and single-factor tests, we established a four-factor three-level response surface methodology for a regression model (four factors: pH, drip loss rate, cooking loss rate, protein content). The optimal combined thawing method for beef rib-eye is: microwave thawing (35 s work/10 s stop, totally 170 s) until beef surfaces soften, then air thawing at 15 degrees C until the beef centre temperature reaches -8 degrees C, and finally ultrasonic thawing at 220 W until the beef centre temperature rises to 0 degrees C. With this method, the drip loss rate is 1.9003%, cooking loss rate is 33.3997%, and protein content is 229.603 mu g, which are not significantly different from the model-predicted theoretical results (P >= 0.05).
引用
收藏
页码:547 / 553
页数:7
相关论文
共 50 条
  • [41] A Study on Regression Model Using Response Surface Methodology
    Nooraziah, Ahmad
    Tiagrajah, V. Janahiraman
    ELECTRONICS, MECHATRONICS AND AUTOMATION III, 2014, 666 : 235 - +
  • [42] Optimizing protocol interaction using response surface methodology
    Vadde, KK
    Syrotiuk, VR
    Montgomery, DC
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2006, 5 (06) : 627 - 639
  • [43] Studies of benzene adsorption using response surface methodology
    Mohan, N.
    Kannan, G. K.
    Simha, Upendra
    Kumar, N. S.
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2012, 19 (04) : 257 - 265
  • [44] Simple Response Surface Methodology Using RSREG (SAS)
    Amir, Wan Muhammad
    Mokhtar, Kasypi
    Rahim, Hanafi A.
    Shafiq, Mohamad
    Aleng, Nor Azlida
    Ali, Zalila
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 855 - 867
  • [45] Development of bacterial bioformulations using response surface methodology
    Priyanka, Shashi
    Kumar, Shashi
    Sharma, Shilpi
    JOURNAL OF APPLIED MICROBIOLOGY, 2024, 135 (11)
  • [46] OPTIMIZATION OF SANDING PARAMETERS USING RESPONSE SURFACE METHODOLOGY
    Hazir, Ender
    Koc, Kucuk Huseyin
    Hiziroglu, Salim
    MADERAS-CIENCIA Y TECNOLOGIA, 2017, 19 (04): : 407 - 416
  • [47] Optimization of thermoacoustic refrigerator using response surface methodology
    N. M. Hariharan
    P. Sivashanmugam
    S. Kasthurirengan
    Journal of Hydrodynamics, 2013, 25 : 72 - 82
  • [48] Optimization of Fura Production Using Response Surface Methodology
    Jideani, V. A.
    Oloruntoba, R. H.
    Jideani, I. A.
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2010, 13 (02) : 272 - 281
  • [49] Parameter optimization technique using the response surface methodology
    Koyamada, K
    Sakai, K
    Itoh, T
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2909 - 2912
  • [50] OPTIMIZATION OF NONDAIRY CURD USING RESPONSE SURFACE METHODOLOGY
    Subasshini, V
    Thilagavathi, S.
    JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, 2021, 3 (02): : 7 - 16