A note on the number of vertices of the Archimedean tiling

被引:1
|
作者
Wei, Xianglin [1 ]
Wang, Weiqi [1 ]
机构
[1] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete geometry; Cube-tiling; Archimedean tiling; Central polygon;
D O I
10.1007/s12190-018-1195-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are 11 Archimedean tilings in R-2. Let E(n) denote the ellipse of short half axis length n(n is an element of Z(+)) centered at an arbitrary vertex of the Archimedean tiling by regular polygons of edge length 1, and let N(E(n)) denote the number of vertices of the Archimedean tiling that lie inside or on the boundary of E(n). In this paper, we present an algorithm to calculate the number N(E(n)), and get a unified formula lim(n ->infinity) = m center dot pi/s, where S is the area of the central polygon, and m is the ratio of long half axis length and short half axis length of the ellipse. Let C be a cube-tiling by cubes of edge length 1 in R-3, and the vertex of cube-tiling is called a C-point. Let S(n) denote the sphere of radius n(n is an element of Z(+)) centered at an arbitrary C-point, and let N-C(S(n)) denote the number of C-points that lie inside or on the surface of S(n). In this paper, we present an algorithm to calculate the number N-C(S(n)) and get a formula lim(n ->infinity) NC(S(n))/n(3) = 4 pi/3v, where V is the volume of the cube.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 50 条
  • [31] A note on fuzzy Archimedean ordering
    Bhakat, SK
    Das, P
    FUZZY SETS AND SYSTEMS, 1997, 91 (01) : 91 - 94
  • [32] A note on archimedean ordered semigroups
    Niovi Kehayopulu
    Algebra universalis, 2018, 79
  • [33] A note on α-redundant vertices in graphs
    Brandstädt, A
    Lozin, VV
    DISCRETE APPLIED MATHEMATICS, 2001, 108 (03) : 301 - 308
  • [34] A note on balance vertices in trees
    Shan, EF
    Kang, LY
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 265 - 269
  • [35] Complex Archimedean Tiling Self-Assembled from DNA Nanostructures
    Zhang, Fei
    Liu, Yan
    Yan, Hao
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (20) : 7458 - 7461
  • [36] Estimating the number of vertices of a polyhedron
    Avis, D
    Devroye, L
    INFORMATION PROCESSING LETTERS, 2000, 73 (3-4) : 137 - 143
  • [37] THE NUMBER OF ROOTED MAPS WITH A FIXED NUMBER OF VERTICES
    GAO, ZC
    ARS COMBINATORIA, 1993, 35 : 151 - 159
  • [38] A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer
    Takano, A
    Kawashima, W
    Noro, A
    Isono, Y
    Tanaka, N
    Dotera, T
    Matsushita, Y
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (18) : 2427 - 2432
  • [39] ON THE NUMBER OF SPERNER VERTICES IN A TREE
    Salii, V. N.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 32 (02): : 115 - 118
  • [40] The number of vertices of a Fano polytope
    Casagrande, C
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (01) : 121 - 130