Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction

被引:167
|
作者
Pan, Fuping [1 ]
Li, Boyang [2 ]
Sarnello, Erik [3 ]
Fei, Yuhuan [4 ]
Feng, Xuhui [1 ]
Gang, Yang [1 ]
Xiang, Xianmei [1 ]
Fang, Lingzhe [3 ]
Li, Tao [3 ,5 ]
Hu, Yun Hang [4 ]
Wang, Guofeng [2 ]
Li, Ying [1 ]
机构
[1] Texas A&M Univ, J Mike Walker Dept Mech Engn 66, College Stn, TX 77843 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Northern Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA
[4] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
[5] Argonne Natl Lab, Xray Sci Div, Chem & Mat Sci Grp, Lemont, IL 60439 USA
来源
ACS CATALYSIS | 2020年 / 10卷 / 19期
基金
美国国家科学基金会;
关键词
local carbon structure; single-atom catalyst; pore edge; CO adsorption; CO2; reduction; ELECTROCHEMICAL CO2; CARBON-DIOXIDE; ACTIVE-SITES; METAL; SELECTIVITY; CATALYSTS; OXYGEN; CONVERSION; OXIDE;
D O I
10.1021/acscatal.0c02499
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hosting atomically dispersed nitrogen-coordinated iron sites (Fe-N-4) on graphene offers unique opportunities for driving electrochemical CO2 reduction reaction (CO2RR) to CO. However, the strong adsorption of *CO on the Fe-N-4 site embedded in intact graphene limits current density due to slow CO desorption process. Herein, we report how the manipulation of pore edges on graphene alters the local electronic structure of isolated Fe-N-4 sites and improves their intrinsic reactivity for prompting CO generation. We demonstrate that constructing holes on graphene basal plane to support Fe-N-4 can significantly enhance its CO2RR compared to the pore-deficient graphene-supported counterpart, exhibiting a CO Faradaic efficiency of 94% and a turnover frequency of 1630 h(-1) at 0.58 V vs RHE. Mechanistic studies reveal that the incorporation of pore edges results in the downshifting of the d-band center of Fe sites, which weakens the strength of the Fe-C bond when the *CO intermediate adsorbs on edge-hosted Fe-N-4, thus boosting the CO desorption and evolution rates. These findings suggest that engineering local support structure renders a way to design high-performance single-atom catalysts.
引用
收藏
页码:10803 / 10811
页数:9
相关论文
共 50 条
  • [31] Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO2 reduction
    Chen, Weiren
    Jin, Xixiong
    Zhang, Lingxia
    Wang, Lianzhou
    Shi, Jianlin
    ADVANCED SCIENCE, 2024, 11 (09)
  • [32] Single-Atom Electrocatalysts for Multi-Electron Reduction of CO2
    Zhang, Bingxing
    Zhang, Baohua
    Jiang, Yinzhu
    Ma, Tianyi
    Pan, Hongge
    Sun, Wenping
    SMALL, 2021, 17 (36)
  • [33] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [34] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [35] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [36] Mechanistic understanding on effect of doping nitrogen with graphene supported single-atom Fe toward electrochemical CO2 reduction: A computational consideration
    Liu, Shao-Wen
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE, 2023, 630
  • [37] Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction
    Zhang, Yuxiang
    Zhao, Jia
    Lin, Sen
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (11)
  • [38] Active Sites on Heterogeneous Single-Iron-Atom Electrocatalysts in CO2 Reduction Reaction
    Qin, Xueping
    Zhu, Shangqian
    Xiao, Fei
    Zhang, Lulu
    Shao, Minhua
    ACS ENERGY LETTERS, 2019, 4 (07) : 1778 - 1783
  • [39] MOF-derived single-atom catalysts with dense zinc and nitrogen sites for efficient CO2 cycloaddition
    Huang, Zhijun
    Wu, Jie
    Yan, Fengwen
    Yuan, Guoqing
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (07) : 2286 - 2294
  • [40] Understanding the Origin of Selective Reduction of CO2 to CO on Single-Atom Nickel Catalyst
    He, Shi
    Ji, Dong
    Zhang, Junwei
    Novello, Peter
    Li, Xueqian
    Zhang, Qiang
    Zhang, Xixiang
    Liu, Jie
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (03): : 511 - 518