Transitive A 6-invariant k-arcs in PG(2, q)

被引:9
|
作者
Giulietti, Massimo [1 ]
Korchmaros, Gabor [2 ]
Marcugini, Stefano [1 ]
Pambianco, Fernanda [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Basilicata, Dipartimento Matemat & Informat, I-85100 Potenza, Italy
关键词
Finite desarguesian planes; k-arcs; A(6); POINTS; CURVES; NUMBER;
D O I
10.1007/s10623-012-9619-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For q = p (r) with a prime p a parts per thousand yen 7 such that or 19 (mod 30), the desarguesian projective plane PG(2, q) of order q has a unique conjugacy class of projectivity groups isomorphic to the alternating group A (6) of degree 6. For a projectivity group of PG(2, q), we investigate the geometric properties of the (unique) I"-orbit of size 90 such that the 1-point stabilizer of I" in its action on is a cyclic group of order 4. Here lies either in PG(2, q) or in PG(2, q (2)) according as 3 is a square or a non-square element in GF(q). We show that if q a parts per thousand yen 349 and q not equal 421, then is a 90-arc, which turns out to be complete for q = 349, 409, 529, 601,661. Interestingly, is the smallest known complete arc in PG(2,601) and in PG(2,661). Computations are carried out by MAGMA.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [21] CYCLIC ARCS IN PG(2, Q)
    STORME, L
    VANMALDEGHEM, H
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (01) : 113 - 128
  • [22] PRIMITIVE ARCS IN PG(2,Q)
    STORME, L
    VANMALDEGHEM, H
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) : 200 - 216
  • [23] Weighted (k,n)-arcs of Type (n- q,n) and Maximum Size of (h,m)-arcs in PG(2,q)
    Yaseen, Mustafa T.
    Ali, Ali Hasan
    Shanan, Ibrahim A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 361 - 368
  • [24] On sizes of complete arcs in PG(2, q)
    Bartoli, Daniele
    Davydov, Alexander A.
    Faina, Giorgio
    Marcugini, Stefano
    Pambianco, Fernanda
    DISCRETE MATHEMATICS, 2012, 312 (03) : 680 - 698
  • [25] On (q2 + q + 2, q + 2)-arcs in the Projective Plane PG(2, q)
    Simeon Ball
    Ray Hill
    Ivan Landjev
    Harold Ward
    Designs, Codes and Cryptography, 2001, 24 : 205 - 224
  • [26] Block-Transitive2-(v,k,1)DesignsandGroupsE6(q)
    Guang Guo HAN Institute of Mathematics Hangzhou Dianzi University Zhejiang P R China Institute of Information Engineering Information Engineering University Henan P R China
    数学研究与评论, 2010, 30 (04) : 581 - 588
  • [27] On the (29,5)-Arcs in PG(2,7) and Some Generalized Arcs in PG(2, q)
    Bouyukliev, Iliya
    Cheon, Eun Ju
    Maruta, Tatsuya
    Okazaki, Tsukasa
    MATHEMATICS, 2020, 8 (03)
  • [28] On (q2+q+2,q+2)-arcs in the Projective Plane PG(2,q)
    Ball, S
    Hill, R
    Landjev, I
    Ward, H
    DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (02) : 205 - 224
  • [29] COMPLETE ARCS AND ALGEBRAIC-CURVES IN PG(2,Q)
    THAS, JA
    JOURNAL OF ALGEBRA, 1987, 106 (02) : 451 - 464
  • [30] New Large (n, r)-arcs in PG(2, q)
    Daskalov, Rumen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 125 - 133