Powder metallurgy (P/M) is the processing of parts from metal powders. In (P/M) technology can be produce homogenous and net shape products, to generate properties not attainable through conventional metal working processes or to manufacture parts to net shape, this reason has motivated the need to find a cost effective technological production method for these composites. In this study the effect of Sintering Temperature and Silicon Carbide Percent on the Compression Properties of the aluminum silicon carbide produced by powder metallurgy is investigated by using the heat treatment of the composite. This method produce a local fusing and welding of the aluminum particles while using aluminum powder with thick oxide layer surrounding the particles prevents the all melting of the composite. Sintering temperatures between 500 and 850 degrees C were applied after cold compaction on samples containing (0%, 5%, 10%, 15%, 20%, 25% 30% and 35%) of silicon carbide powder then the specimens examined to study the compression properties. The results show that the compression properties of the samples increases with increasing the silicon carbide percent and sintering temperature. Also, to obtain good compression properties the sintering temperature are found to be 600 degrees C for the aluminum with no silicon carbide content, 700 degrees C for composite containing both 5% and 10% SiC, 750 degrees C for composite containing 15% SiC, 800 degrees C for composite containing 20%,25% SiC, 850 degrees C for composite containing 30%,35% SiC.