Noncommutative geometry of the quantum clock

被引:3
|
作者
Mignemi, S. [1 ,2 ]
Uras, N. [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
[2] INFN, Sez Cagliari, Cittadella Univ, I-09042 Monserrato, Italy
关键词
Generalized uncertainty relations; Doubly special relativity; Noncommutative geometry; GENERALIZED UNCERTAINTY PRINCIPLE; RELATIVITY; GRAVITY; PARTICLES; VELOCITY; FIELD;
D O I
10.1016/j.physleta.2019.01.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model of noncommutative geometry that gives rise to the uncertainty relations recently derived from the discussion of a quantum clock. We investigate the dynamics of a free particle in this model from the point of view of doubly special relativity and discuss the geodesic motion in a Schwarzschild background. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:585 / 588
页数:4
相关论文
共 50 条
  • [21] Intersecting connes noncommutative geometry with quantum gravity
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (8-9): : 1589 - 1603
  • [22] Noncommutative geometry and quantum spacetime in physics - Preface
    Sasakura, Naoki
    Watamura, Satoshi
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (171): : I - I
  • [23] Quantum Group of Isometries in Classical and Noncommutative Geometry
    Debashish Goswami
    Communications in Mathematical Physics, 2009, 285
  • [24] Noncommutative analysis and quantum pure state geometry
    Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
    WSEAS Trans. Math., 2007, 1 (225-232):
  • [25] Finite quantum field theory in noncommutative geometry
    Grosse, H
    Klimcik, C
    Presnajder, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 231 - 244
  • [26] Quantum Group of Isometries in Classical and Noncommutative Geometry
    Goswami, Debashish
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (01) : 141 - 160
  • [27] Noncommutative complex geometry of the quantum projective space
    Khalkhali, Masoud
    Moatadelro, Ali
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2436 - 2452
  • [28] AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS
    ASCHIERI, P
    CASTELLANI, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1667 - 1706
  • [29] Covariant quantum mechanics applied to noncommutative geometry
    Astuti, Valerio
    CONCEPTUAL AND TECHNICAL CHALLENGES FOR QUANTUM GRAVITY 2014 - PARALLEL SESSION: NONCOMMUTATIVE GEOMETRY AND QUANTUM GRAVITY, 2015, 634
  • [30] Noncommutative geometry from perturbative quantum gravity
    Froeb, Markus B.
    Much, Albert
    Papadopoulos, Kyriakos
    PHYSICAL REVIEW D, 2023, 107 (06)