Piecewise Fractional Jacobi Polynomial Approximations for Volterra Integro-Differential Equations with Weakly Singular Kernels

被引:2
|
作者
Li, Haiyang [1 ]
Ma, Junjie [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Volterra integro-differential equation; global convergence; piecewise Galerkin method; fractional Jacobi polynomial; DISCONTINUOUS GALERKIN METHOD; H-P VERSION; INTEGRAL-EQUATIONS; COLLOCATION; SMOOTH;
D O I
10.3390/axioms11100530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with numerical solutions to Volterra integro-differential equations with weakly singular kernels. Making use of the transformed fractional Jacobi polynomials, we develop a class of piecewise fractional Galerkin methods for solving this kind of Volterra equation. Then, we study the existence, uniqueness and convergence properties of Galerkin solutions by exploiting the decaying rate of the coefficients of the transformed fractional Jacobi series. Finally, numerical experiments are carried out to illustrate the performance of the piecewise Galerkin solution.
引用
收藏
页数:19
相关论文
共 50 条