Genome-wide identification and characterization of ABA receptorPYLgene family in rice

被引:73
|
作者
Yadav, Shashank Kumar [1 ,2 ]
Santosh Kumar, Vinjamuri Venkata [1 ]
Verma, Rakesh Kumar [1 ]
Yadav, Pragya [1 ]
Saroha, Ankit [3 ]
Wankhede, Dhammaprakash Pandhari [3 ]
Chaudhary, Bhupendra [2 ]
Chinnusamy, Viswanathan [1 ]
机构
[1] Indian Agr Res Inst, ICAR, Div Plant Physiol, Pusa Campus, New Delhi 110012, India
[2] Gautam Buddha Univ, Sch Biotechnol, Greater Noida 201310, UP, India
[3] Natl Bur Plant Genet Resources, ICAR, Pusa Campus, New Delhi 110012, India
关键词
ABA receptors (ABARs); Abiotic stresses; Collinearity; miRNAs; Single amino acid polymorphism (SAP); Single nucleotide polymorphism (SNP); Stress responsivecis-elements; Synteny; ABSCISIC-ACID RECEPTORS; SIGNAL-TRANSDUCTION; GENE-EXPRESSION; DROUGHT STRESS; COMBINATORIAL INTERACTION; INTERACTION NETWORK; SEED-GERMINATION; MOLECULAR-BASIS; PROTEIN; TRANSCRIPTION;
D O I
10.1186/s12864-020-07083-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Abscisic acid (ABA), a key phytohormone that controls plant growth and stress responses, is sensed by the pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Comprehensive information on evolution and function ofPYLgene family in rice (Oryza sativa) needs further investigation. This study made detailed analysis on evolutionary relationship between PYL family members, collinearity, synteny, gene structure, protein motifs,cis-regulatory elements (CREs), SNP variations, miRNAs targetingPYLsand expression profiles in different tissues and stress responses. Results Based on sequence homology withArabidopsisPYL proteins, we identified a total of 13 PYLs in rice (BOP clade) and maize (PACCMAD clade), while other members of BOP (wheat - each diploid genome, barley andBrachypodium) and PACCMAD (sorghum and foxtail millet) have 8-9 PYLs. The phylogenetic analysis divided PYLs into three subfamilies that are structurally and functionally conserved across species. Gene structure and motif analysis ofOsPYLs revealed that members of each subfamily have similar gene and motif structure. Segmental duplication appears be the driving force for the expansion ofPYLs, and the majority of thePYLsunderwent evolution under purifying selection in rice. 32 unique potential miRNAs that might targetPYLswere identified in rice. Thus, the predicted regulation ofPYLsthrough miRNAs in rice is more elaborate as compared withB. napus. Further, the miRNAs identified to in this study were also regulated by stresses, which adds additional layer of regulation ofPYLs. The frequency of SAPs identified was higher inindicacultivars and were predominantly located in START domain that participate in ABA binding. The promoters of most of theOsPYLs havecis-regulatory elements involved in imparting abiotic stress responsive expression. In silico and q-RT-PCR expression analyses ofPYLgenes revealed multifaceted role of ABARs in shaping plant development as well as abiotic stress responses. Conclusion The predicted miRNA mediated regulation ofOsPYLsand stress regulated expression of allOsPYLs, at least, under one stress, lays foundation for further validation and fine tuning ABA receptors for stress tolerance without yield penalty in rice.
引用
收藏
页数:27
相关论文
共 50 条
  • [11] Genome-Wide Identification and Characterization of Glycosyltransferase Family 47 in Cotton
    Wu, Aimin
    Hao, Pengbo
    Wei, Hengling
    Sun, Huiru
    Cheng, Shuaishuai
    Chen, Pengyun
    Ma, Qiang
    Gu, Lijiao
    Zhang, Meng
    Wang, Hantao
    Yu, Shuxun
    FRONTIERS IN GENETICS, 2019, 10
  • [12] Genome-wide identification and characterization of the ALOG gene family in Petunia
    Feng Chen
    Qin Zhou
    Lan Wu
    Fei Li
    Baojun Liu
    Shuting Zhang
    Jiaqi Zhang
    Manzhu Bao
    Guofeng Liu
    BMC Plant Biology, 19
  • [13] Genome-wide identification and characterization of the TIFY gene family in kiwifruit
    Tao, Junjie
    Jia, Huimin
    Wu, Mengting
    Zhong, Wenqi
    Jia, Dongfeng
    Wang, Zupeng
    Huang, Chunhui
    BMC GENOMICS, 2022, 23 (01)
  • [14] Genome-wide identification and characterization of the ALOG gene family in Petunia
    Chen, Feng
    Zhou, Qin
    Wu, Lan
    Li, Fei
    Liu, Baojun
    Zhang, Shuting
    Zhang, Jiaqi
    Bao, Manzhu
    Liu, Guofeng
    BMC PLANT BIOLOGY, 2019, 19 (01)
  • [15] Genome-wide identification and characterization of the bHLH gene family in tomato
    Hua Sun
    Hua-Jie Fan
    Hong-Qing Ling
    BMC Genomics, 16
  • [16] Genome-wide identification and characterization of GATA family genes in wheat
    Xue Feng
    Qian Yu
    Jianbin Zeng
    Xiaoyan He
    Wenxing Liu
    BMC Plant Biology, 22
  • [17] Genome-wide identification and characterization of the bHLH gene family in tomato
    Sun, Hua
    Fan, Hua-Jie
    Ling, Hong-Qing
    BMC GENOMICS, 2015, 16
  • [18] Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut
    Song, Hui
    Wang, Pengfei
    Lin, Jer-Young
    Zhao, Chuanzhi
    Bi, Yuping
    Wang, Xingjun
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [19] Genome-wide identification and characterization of FAD family genes in barley
    Cao, Tingting
    Du, Qingwei
    Ge, Rongchao
    Li, Ruifen
    PEERJ, 2024, 12
  • [20] Genome-wide identification and characterization of the TIFY gene family in kiwifruit
    Junjie Tao
    Huimin Jia
    Mengting Wu
    Wenqi Zhong
    Dongfeng Jia
    Zupeng Wang
    Chunhui Huang
    BMC Genomics, 23