Short-term forecasting of industrial electricity consumption in Brazil

被引:1
|
作者
Sadownik, R
Barbosa, EP
机构
[1] UNICAMP, IMECC, BR-13083970 Campinas, SP, Brazil
[2] IBGE, ENCE, BR-20231050 Rio De Janeiro, Brazil
关键词
electricity consumption; time series forecasting; non-linear models; shared component; multiplicative seasonality;
D O I
10.1002/(SICI)1099-131X(199905)18:3<215::AID-FOR719>3.3.CO;2-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents short-term forecasting methods applied to electricity consumption in Brazil. The focus is on comparing the results obtained after using two distinct approaches: dynamic non-linear models and econometric models. The first method, that we propose, is based on structural statistical models for multiple time series analysis and forecasting. It involves nonobservable components of locally linear trends for each individual series and a shared multiplicative seasonal component described by dynamic harmonics. The second method,adopted by the electricity power utilities in Brazil, consists of extrapolation of the past data and is based on statistical relations of simple or multiple regression type. To illustrate the proposed methodology, a numerical application is considered with real data. The data represents the monthly industrial electricity consumption in Brazil from the three main power utilities: Eletropaulo, Cemig and Light, situated at the major energy-consuming states, Sao Paulo, Rio de Janeiro and Minas Gerais, respectively, in the Brazilian Southeast region. The chosen time period, January 1990 to September 1994, corresponds to an economically unstable period just before the beginning of the Brazilian Privatization Program. Implementation of the algorithms considered in this work was made via the statistical software S-PLUS. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [41] Functional Data Approach for Short-Term Electricity Demand Forecasting
    Shah, Ismail
    Jan, Faheem
    Ali, Sajid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [42] Short-Term Electricity Demand Forecasting Based on Multiple LSTMs
    Yong, Binbin
    Shen, Zebang
    Wei, Yongqiang
    Shen, Jun
    Zhou, Qingguo
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 192 - 200
  • [43] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [44] Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders
    Wang, Long
    Zhang, Zijun
    Chen, Jieqiu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2673 - 2681
  • [45] The new hybrid approaches to forecasting short-term electricity load
    Fan, Guo-Feng
    Liu, Yan-Rong
    Wei, Hui-Zhen
    Yu, Meng
    Li, Yin-He
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [46] Research in residential electricity characteristics and short-term load forecasting
    Feng, H. (fenghaixiashiwo@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [47] Online SARIMA applied for short-term electricity load forecasting
    Nguyen Thi Ngoc Anh
    Nguyen Nhat Anh
    Tran Ngoc Thang
    Vijender Kumar Solanki
    Rubén González Crespo
    Nguyen Quang Dat
    Applied Intelligence, 2024, 54 : 1003 - 1019
  • [48] Performance Analysis of Short-term Electricity Demand Forecasting for Thailand
    Chapagain, Kamal
    Kittipiyakul, Somsak
    Kulthanavit, Pisut
    2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 116 - 119
  • [49] Periodically correlated models for short-term electricity load forecasting
    Caro, Eduardo
    Juan, Jesus
    Cara, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [50] Functional Data Approach for Short-Term Electricity Demand Forecasting
    Shah, Ismail
    Jan, Faheem
    Ali, Sajid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022