Nanostructured poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) triblock copolymers and their CO2/O2 permselectivity

被引:8
|
作者
Yun Xueyan [1 ]
Li Xiaofang [1 ]
Pan Pengju [2 ]
Dong Tungalag [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Food Sci & Engn, 306 Zhaowuda Rd, Hohhot 010018, Inner Mongolia, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
来源
RSC ADVANCES | 2019年 / 9卷 / 22期
基金
中国国家自然科学基金;
关键词
GAS PERMEATION PROPERTIES; POLYETHYLENE-GLYCOL; POLY(ETHYLENE GLYCOL); BARRIER PROPERTIES; TRANSPORT; BLENDS; PERFORMANCE; SOLUBILITY; MEMBRANES;
D O I
10.1039/c9ra00656g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biodegradable poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) (PLLA-PEG-PLLA) copolymers were synthesized by ring-opening polymerization of l-lactide using dihydroxy PEG as the initiator. The effects of different PEG segments in the copolymers on the mechanical and permeative properties were investigated. It was determined that certain additions of PEG result in composition-dependent microphase separation structures with both PLLA and PEG blocks in the amorphous state. Amorphous PEGs with high CO2 affinity form gas passages that provide excellent CO2/O-2 permselectivity in such a nanostructure morphology. The gas permeability and permselectivity depend on the molecular weight and content of the PEG and are influenced by the temperature. Copolymers that have a higher molecular weight and content of PEG present better CO2 permeability at higher temperatures but provide better CO2/O-2 permselectivity at lower temperatures. In addition, the hydrophilic PEG segments improve the water vapor permeability of PLLA. Such biodegradable copolymers have great potential for use as fresh product packaging.
引用
收藏
页码:12354 / 12364
页数:11
相关论文
共 50 条
  • [41] A New Injectable Thermogelling Material: Methoxy Poly(ethylene glycol)-Poly(sebacic acid-D,L-lactic acid)-Methoxy Poly(ethylene glycol) Triblock Co-polymer
    Zhai, Yinglei
    Deng, Liandong
    Xing, Jinfeng
    Liu, Yu
    Zhang, Qiang
    Dong, Anjie
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2009, 20 (7-8) : 923 - 934
  • [42] Preparation and thermo-oxidative degradation of poly(l-lactic acid)/poly(l-lactic acid)-grafted SiO2 nanocomposites
    Deling Li
    Guangtian Liu
    Lihong Wang
    Yulong Shen
    Polymer Bulletin, 2011, 67 : 1529 - 1538
  • [43] Catalyst free synthesis of poly(L-lactic acid)-poly(propylene glycol) multiblock copolymers and their properties
    Jiang, Ziyan
    Chang, Yue
    Chen, Zhize
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (37)
  • [44] Reactive blending of poly(L-lactic acid) with poly(ethylene-co-vinyl alcohol)
    Lee, CM
    Kim, ES
    Yoon, JS
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (02) : 886 - 890
  • [45] Vibrational Analysis of Poly(L-lactic acid)
    Kister, G.
    Cassanas, G.
    Vert, M.
    Pauvert, B.
    Journal of South American Earth Sciences, 1600, 86 (01):
  • [46] Intrinsic birefringence of poly(L-lactic acid)
    Ohkoshi, Y
    Shirai, H
    Gotoh, Y
    Nagura, M
    SEN-I GAKKAISHI, 1999, 55 (01) : 21 - 27
  • [47] Degradation of poly(L-lactic acid) by γ-irradiation
    Nugroho, P
    Mitomo, H
    Yoshii, F
    Kume, T
    POLYMER DEGRADATION AND STABILITY, 2001, 72 (02) : 337 - 343
  • [48] Antitumour characteristics of irinotecan-containing microspheres of poly-d,l-lactic acid or poly(d,l-lactic acid-co-glycolic acid) copolymers
    Machida, Y
    Onishi, H
    Morikawa, A
    Machida, Y
    STP PHARMA SCIENCES, 1998, 8 (03): : 175 - 181
  • [49] Preparation of Poly (L-lactic Acid) Microsphere
    Zou, Jianpeng
    Ruan, Jianming
    Zhou, Zhongcheng
    Zhou, Zhihua
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2011, 50 (02): : 300 - 305
  • [50] VIBRATIONAL ANALYSIS OF POLY(L-LACTIC ACID)
    KISTER, G
    CASSANAS, G
    VERT, M
    PAUVERT, B
    TEROL, A
    JOURNAL OF RAMAN SPECTROSCOPY, 1995, 26 (04) : 307 - 311