Inverse spectral problems for energy-dependent Sturm-Liouville equations

被引:44
|
作者
Hryniv, Rostyslav [1 ,2 ]
Pronska, Nataliya [1 ]
机构
[1] Inst Appl Problems Mech & Math, 3B Naukova St, UA-79601 Lvov, Ukraine
[2] Univ Rzeszow, Inst Math, PL-35959 Rzeszow, Poland
关键词
DIMENSIONAL SCHRODINGER-EQUATION; SCATTERING PROBLEM; OPERATORS; POTENTIALS; EIGENVALUES; PENCIL;
D O I
10.1088/0266-5611/28/8/085008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse spectral problem of reconstructing energy-dependent Sturm-Liouville equations from their Dirichlet spectra and sequences of the norming constants. For the class of problems under consideration, we give a complete description of the corresponding spectral data, suggest a reconstruction algorithm, and establish uniqueness of reconstruction. The approach is based on connection between spectral problems for energy-dependent Sturm-Liouville equations and for Dirac operators of a special form.
引用
收藏
页数:21
相关论文
共 50 条