Synthesis of avenanthramides using engineered Escherichia coli

被引:16
|
作者
Lee, Su Jin [1 ]
Sim, Geun Young [1 ]
Kang, Hyunook [1 ]
Yeo, Won Seok [1 ]
Kim, Bong-Gyu [2 ]
Ahn, Joong-Hoon [1 ]
机构
[1] Konkuk Univ, Bio Mol Informat Ctr, Dept Integrat Biosci & Biotechnol, Seoul 05029, South Korea
[2] Gyeongnam Natl Univ Sci & Technol, Dept Forest Resources, 33 Dongjin Ro, Jinju Si 52725, Gyeongsangman D, South Korea
来源
MICROBIAL CELL FACTORIES | 2018年 / 17卷
基金
新加坡国家研究基金会;
关键词
Avenanthramides; Escherichia coli; Metabolic engineering; BACTERIAL SYNTHESIS; ACID-AMIDES; HYDROXYCINNAMOYL; ACYLTRANSFERASES; BIOSYNTHESIS; METABOLISM; EXPRESSION; EVOLUTION; STRAINS; GENES;
D O I
10.1186/s12934-018-0896-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. Results: We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate: coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Conclusions: Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase
    Park, Soyoon
    Moon, Keumok
    Park, Cheon-Seok
    Jung, Dong-Hyun
    Cha, Jaeho
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 28 (04) : 566 - 570
  • [22] Production of itaconic acid using metabolically engineered Escherichia coli
    Okamoto, Shusuke
    Chin, Taejun
    Hiratsuka, Ken
    Aso, Yuji
    Tanaka, Yasutomo
    Takahashi, Tetsuya
    Ohara, Hitomi
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2014, 60 (05): : 191 - 197
  • [23] Biosynthesis of Pinocembrin from Glucose Using Engineered Escherichia coli
    Kim, Bong Gyu
    Lee, Hyejin
    Ahn, Joong-Hoon
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 24 (11) : 1536 - 1541
  • [24] Production of extracellular fatty acid using engineered Escherichia coli
    Liu, Hui
    Yu, Chao
    Feng, Dexin
    Cheng, Tao
    Meng, Xin
    Liu, Wei
    Zou, Huibin
    Xian, Mo
    MICROBIAL CELL FACTORIES, 2012, 11
  • [25] Production of glycerate from glucose using engineered Escherichia coli
    Long, Bui Hoang Dang
    Matsubara, Kotaro
    Tanaka, Tomonari
    Ohara, Hitomi
    Aso, Yuji
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2023, 135 (05) : 375 - 381
  • [26] Antioxidant assay using genetically engineered bioluminescent Escherichia coli
    Bartolome, Arnelita
    Macalino, Bernadette
    Pastoral, Ian Lemuel
    Sevilla, Fortunato, III
    GENETICALLY ENGINEERED PROBES FOR BIOMEDICAL APPLICATIONS, 2006, 6098
  • [27] Production of extracellular fatty acid using engineered Escherichia coli
    Hui Liu
    Chao Yu
    Dexin Feng
    Tao Cheng
    Xin Meng
    Wei Liu
    Huibin Zou
    Mo Xian
    Microbial Cell Factories, 11
  • [28] Improved production of heme using metabolically engineered Escherichia coli
    Choi, Kyeong Rok
    Yu, Hye Eun
    Lee, Hoseong
    Lee, Sang Yup
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (11) : 3178 - 3193
  • [29] Production of acetol from glycerol using engineered Escherichia coli
    Zhu, Hongliang
    Yi, Xianyang
    Liu, Yi
    Hu, Hongbo
    Wood, Thomas K.
    Zhang, Xuehong
    BIORESOURCE TECHNOLOGY, 2013, 149 : 238 - 243
  • [30] Detection of Escherichia coli in drinking water using engineered bacteriophage
    Chen, Anqi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253