Structural Parameter Analysis of Steelmaking Desulfurization Agitator Based on Image Processing

被引:0
|
作者
Nan, Rong [1 ]
Xiong, Ling [1 ]
Dan, Bin Bin [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
KR stirring desulfuration; image segmentation; K means clustering; water model experiment;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
KR stirred hot metal desulphurization is a key step in the steel production process and the structural parameters of the mixer directly affect the desulphurization effect. In this paper, a structural parameter analysis method based on image processing is proposed. The water model experiment is done by control variable method, at the same time, the experimental pictures are obtained. Moreover, the K-means clustering method is introduced to process the image segmentation, and the pixel number of the obtained target image is used to evaluate the degree of dispersion of desulfurization agent and the agitator structural parameters are determined by dispersity. Experimental data analysis results are given to demonstrate the agitator structural parameters with mixing uniformity can be accurately determined and the optimal parameter values can be got.
引用
收藏
页码:2150 / 2153
页数:4
相关论文
共 50 条
  • [21] Range image processing based on multiresolution analysis
    Djebali, M
    Melkemi, K
    Melkemi, M
    Vandorpe, D
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL I, 1996, : 281 - 286
  • [22] An image-processing method based on regional separation-parameter coupling for the stability analysis of biodiesel flame
    Tang, Cunjing
    Li, Fashe
    Zhang, Huicong
    Duan, Yaozong
    Zhu, Zhiheng
    Chen, Ning
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [23] Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image Processing
    Li, Zhongbo
    Yin, Chao
    Zhang, Xixuan
    SENSORS, 2023, 23 (22)
  • [24] Whiteness-based parameter selection for Poisson data in variational image processing
    Bevilacqua, Francesca
    Lanza, Alessandro
    Pragliola, Monica
    Sgallari, Fiorella
    APPLIED MATHEMATICAL MODELLING, 2023, 117 : 197 - 218
  • [25] A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
    Khan, Arif Ul Maula
    Mikut, Ralf
    Reischl, Markus
    PLOS ONE, 2016, 11 (10):
  • [26] Visual parameter optimisation for biomedical image processing
    AJ Pretorius
    Y Zhou
    RA Ruddle
    BMC Bioinformatics, 16
  • [27] Visual parameter optimisation for biomedical image processing
    Pretorius, A. J.
    Zhou, Y.
    Ruddle, R. A.
    BMC BIOINFORMATICS, 2015, 16
  • [28] Graph-based representations and techniques for image processing and image analysis
    Sanfeliu, A
    Alquézar, R
    Andrade, J
    Climent, J
    Serratosa, F
    Vergés, J
    PATTERN RECOGNITION, 2002, 35 (03) : 639 - 650
  • [29] Nanocrystallic thin films statistical structural analysis by the automatic image processing
    Wielgus, Maciek
    Sunderland, Zofia
    Koguciuk, Daniel
    Patorski, Krzysztof
    Slowik, Grzegorz
    MICRO/NANO MATERIALS, DEVICES, AND SYSTEMS, 2013, 8923
  • [30] POINT CLOUD SEGMENTATION USING IMAGE PROCESSING TECHNIQUES FOR STRUCTURAL ANALYSIS
    Barrile, V
    Candela, G.
    Fotia, A.
    2ND INTERNATIONAL CONFERENCE OF GEOMATICS AND RESTORATION (GEORES 2019), 2019, 42-2 (W11): : 187 - 193