Reconstruction of 3D Cardiac MR Images from 2D Slices Using Directional Total Variation

被引:6
|
作者
Basty, Nicolas [1 ]
McClymont, Darryl [2 ]
Teh, Irvin [2 ,3 ]
Schneider, Juergen E. [2 ,3 ]
Grau, Vicente [1 ]
机构
[1] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Radcliffe Dept Med, Div Cardiovasc Med, Oxford, England
[3] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Leeds, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
3D image reconstruction; Super-resolution; Cardiac MRI; Regularisation; Directional total variation; SUPERRESOLUTION;
D O I
10.1007/978-3-319-67564-0_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cardiac MRI allows for the acquisition of high resolution images of the heart. Long acquisition times of MRI make it impractical to image the full heart in 3D at high resolution. As a result, multiple 2D images are commonly acquired with a slice thickness greater than the in-plane resolution. One way of achieving isotropic high-resolution images is to apply post-processing techniques such as super-resolution to produce high resolution images from low resolution input. We use shortaxis stacks as well as orthogonal long-axis views in a super-resolution framework, constraining the reconstruction using the contrast independent directional total variation algorithm to produce a high resolution 3D reconstruction with isotropic resolution. The 3D reconstruction retains the contrast of the short-axis stack, but incorporates the edge information from both the short-axis and the long-axis stacks. Results show improved reconstructions, with a segmentation voxel misclassification rate of 3.51% as opposed to 4.27% using linear interpolation.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 50 条
  • [21] 3D reconstruction of 2D ICT images by Matlab
    Wei Dongbo
    Li Dan
    Tang Qibo
    Xu Haijun
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3949 - 3952
  • [22] The effects of using 2D and 3D regularization on Bayesian emission reconstruction of cardiac spect images.
    Bai, C
    Zhao, Z
    Shao, L
    Zeng, GL
    Gullberg, GT
    JOURNAL OF NUCLEAR MEDICINE, 2001, 42 (05) : 138P - 138P
  • [23] 3D Reconstruction Based on 2D ERT Slices in Dredging Engineering
    Dong, Fanpeng
    Yue, Shihong
    Zhao, Yuwei
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [24] 3D surface reconstruction from multiview photographic images using 2D edge contours
    Prakoonwit, Simant
    Benjamin, Ralph
    3D RESEARCH, 2012, 3 (04):
  • [25] SSR-2D: Semantic 3D Scene Reconstruction From 2D Images
    Huang, Junwen
    Artemov, Alexey
    Chen, Yujin
    Zhi, Shuaifeng
    Xu, Kai
    Niessner, Matthias
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 8486 - 8501
  • [26] Reconstruction and flow simulation of 3D human trachea from 2D images
    National Center for High-Performance Computing, P.O.BOX 19-136, Hsinchu, Taiwan, Taiwan
    Hangkong Taikong ji Minhang Xuekan, 2007, 1 (39-44):
  • [27] A quantitative comparison of methods for 3D face reconstruction from 2D images
    Morales, Araceli
    Piella, Gemma
    Martinez, Oriol
    Sukno, Federico M.
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 731 - 738
  • [28] Reconstruction of 3D Microstructures from 2D Images via Transfer Learning
    Bostanabad, Ramin
    COMPUTER-AIDED DESIGN, 2020, 128
  • [29] 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow
    Wen, Xin
    Zhou, Junsheng
    Liu, Yu-Shen
    Su, Hua
    Dong, Zhen
    Han, Zhizhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3793 - 3803
  • [30] 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images
    Yeom, Eunseop
    Nam, Kweon-Ho
    Jin, Changzhu
    Paeng, Dong-Guk
    Lee, Sang-Joon
    ULTRASONICS, 2014, 54 (08) : 2184 - 2192