Deagglomeration of rice starch-protein aggregates by high-pressure homogenization

被引:0
|
作者
Guraya, HS [1 ]
James, C [1 ]
机构
[1] ARS, USDA, So Reg Res Ctr, New Orleans, LA 70179 USA
来源
STARCH-STARKE | 2002年 / 54卷 / 3-4期
关键词
rice starch; rice protein; wet milling; high pressure;
D O I
10.1002/1521-379X(200204)54:3/4<108::AID-STAR108>3.0.CO;2-2
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Starch-protein agglomerates of rice are physically disrupted in presence of water by use of a high pressure homogenizer called microfluidizer(R) followed by density based separation. Rice flour slurry at concentrations of 22, 32 and 36 0% was passed twice through the microfluidizer to determine optimum concentration and recycling conditions. It was determined that 32 %. slurry and two passes were optimum but the optimum pressure was 10.0 x 10(4) kPa for non-waxy rice flour and 6.2 x 10(4) kPa for waxy flour. These conditions yielded low-protein starch with starch damage of 5.3%, 99.9% particles with size less than 10 mum, starch recovery of 72%. and 2.7% protein in starch for non-waxy starch. The same parameters were 6.1%,99.0%,76% and 3.3% for waxy starch. The peak, minimum, breakdown, final and setback viscosity was 237,8, 115.2, 122.6, 145.1, 29.9 and 68.2 RVU for low-protein waxy rice starch and 223.4, 140.2, 83.2, 258.6 and 118.4 RVU for non-waxy low-protein rice starch, respectively, The pasting temperature was 68.7 degreesC for waxy and 81.33 degreesC for non-waxy low-protein rice starch. The solubility of protein increased with increasing concentration and number of passes, however, it decreased with increasing number of passes for waxy rice protein.
引用
收藏
页码:108 / +
页数:8
相关论文
共 50 条
  • [21] High-pressure homogenization thinned starch paste and its application in improving the stickiness of cooked non-glutinous rice
    Li, Hongyan
    Yan, Shu
    Yang, Lu
    Xu, Minghao
    Ji, Jingyun
    Liu, Yingli
    Wang, Jing
    Sun, Baoguo
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2020, 131
  • [22] The impact of pH shifting combined high-pressure homogenization on structural and functional properties of rice dreg protein
    Wang, Yueru
    Liu, Xinhua
    Luo, Shunjing
    Zhong, Chengpeng
    Ye, Jiangping
    Liu, Chengmei
    INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2024, 91
  • [23] HIGH-PRESSURE HOMOGENIZATION MECHANISMS
    MOHR, KH
    CHEMISCHE TECHNIK, 1981, 33 (09): : 494 - 494
  • [24] Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films
    Fu, Zong-qiang
    Wang, Li-jun
    Li, Dong
    Wei, Qing
    Adhikari, Benu
    CARBOHYDRATE POLYMERS, 2011, 86 (01) : 202 - 207
  • [25] Effect of High-Pressure Homogenization on Rheological Properties and Multiscale Structure of Pea Starch
    Hu R.
    Wang N.
    Zhang F.
    Zheng J.
    Shipin Kexue/Food Science, 2023, 44 (05): : 53 - 61
  • [26] Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization
    Guo, Zebin
    Zhao, Beibei
    Chen, Liding
    Zheng, Baodong
    NUTRIENTS, 2019, 11 (02):
  • [27] Preparation of corn starch-fatty acid complexes by high-pressure homogenization
    Meng, Shuang
    Ma, Ying
    Cui, Jie
    Sun, Da-Wen
    STARCH-STARKE, 2014, 66 (9-10): : 809 - 817
  • [28] Influence of high-pressure homogenization on the physicochemical properties of bambara starch complexed with lysophosphatidylcholine
    Oyeyinka, Samson A.
    Singh, Suren
    Ma, Ying
    Amonsou, Eric O.
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2016, 74 : 120 - 127
  • [29] EFFECT OF HIGH-PRESSURE HOMOGENIZATION ON THE FUNCTIONAL PROPERTY OF PEANUT PROTEIN
    Dong, Xinhong
    Zhao, Mouming
    Yang, Bao
    Yang, Xiaoquan
    Shi, John
    Jiang, Yueming
    JOURNAL OF FOOD PROCESS ENGINEERING, 2011, 34 (06) : 2191 - 2204
  • [30] Physical modification of starch by high-pressure homogenization for improving functional properties of κ-carrageenan/starch blend film
    Shahbazi, Mahdiyar
    Majzoobi, Mahsa
    Farahnaky, Asgar
    FOOD HYDROCOLLOIDS, 2018, 85 : 204 - 214