An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit

被引:42
|
作者
Klar, A [1 ]
机构
[1] Free Univ Berlin, FB Math & Informat, D-14195 Berlin, Germany
关键词
kinetic equations; asymptotic analysis; low Mach number limit; incompressible Navier-Stokes equations; Chorin projection; MAC grid; numerical methods for stiff equations;
D O I
10.1137/S0036142997321765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonstationary Boltzmann equation in the incompressible Navier-Stokes limit is developed. The scheme is induced by the asymptotic analysis of the Navier-Stokes limit for the Boltzmann equation. It works uniformly for all ranges of mean free paths. In the limit the scheme reduces to the Chorin projection method for the incompressible Navier-Stokes equation. Numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.
引用
收藏
页码:1507 / 1527
页数:21
相关论文
共 50 条
  • [31] Low Mach Number Limit of Solutions to the Stochastic Compressible Magnetohydrodynamic Equations
    Wang, Huaqiao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) : 2413 - 2451
  • [32] Low mach number limit of the full Navier-Stokes equations
    Alazard, T
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) : 1 - 73
  • [33] A SUCCESSIVE PENALTY-BASED ASYMPTOTIC-PRESERVING SCHEME FOR KINETIC EQUATIONS
    Yan, Bokai
    Jin, Shi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A150 - A172
  • [34] An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
    Sun, Wenjun
    Jiang, Song
    Xu, Kun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 285 : 265 - 279
  • [35] A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit
    Chen, Songze
    Xu, Kun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 288 : 52 - 65
  • [36] An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes
    Goudon, Thierry
    Llobell, Julie
    Minjeaud, Sebastian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (05) : 1098 - 1128
  • [37] A MINICOURSE ON THE LOW MACH NUMBER LIMIT
    Alazard, Thomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (03): : 365 - 404
  • [38] The Active Flux Scheme on Cartesian Grids and Its Low Mach Number Limit
    Barsukow, Wasilij
    Hohm, Jonathan
    Klingenberg, Christian
    Roe, Philip L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 594 - 622
  • [39] The Active Flux Scheme on Cartesian Grids and Its Low Mach Number Limit
    Wasilij Barsukow
    Jonathan Hohm
    Christian Klingenberg
    Philip L. Roe
    Journal of Scientific Computing, 2019, 81 : 594 - 622
  • [40] Asymptotic and numerical analysis of an inviscid bounded vortex flow at low Mach number
    Cadiou, Anne
    Le Penven, Lionel
    Buffat, Marc
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (18) : 8268 - 8289