Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference

被引:9
|
作者
Dubois, Eric Ravindranath [1 ]
Kherbouchi, Hocine [1 ]
Bosson, Joel [2 ]
机构
[1] Thales Avion Elect Syst, F-78400 Chatou, France
[2] Thales LAS France, F-78990 Elancourt, France
关键词
Lithium-ion batteries; Electrodes; Radio frequency; Power cables; Electromagnetics; Capacitors; Capacitor; lithium-ion batteries; thermal runaway; SHORT-CIRCUIT; ISSUES; FIRE;
D O I
10.1109/TEMC.2020.2966743
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are used in many modern systems where several thermal runaway accidents are reported. Apart from mechanical abuse, the main cause of accidents are high current densities due to some internal short circuit, caused by overcharging or over-discharging. In this article, it is shown that the high current densities, far above the safe threshold, can also be caused by electromagnetic interference. As a battery is very comparable to a capacitor, the combination with interconnecting wires makes it a resonant, or a, unforeseen tuned, circuit. Experiments with electrolytic capacitors have been performed to confirm this effect, followed by experiments with lithium-ion battery cells. Then, high-frequency currents using the standard bulk current injection test setups, have been injected at the resonance frequency until thermal runaway that induces vent out occurs.
引用
收藏
页码:2096 / 2100
页数:5
相关论文
共 50 条
  • [11] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Song, Liubin
    Zheng, Youhang
    Xiao, Zhongliang
    Wang, Cheng
    Long, Tianyuan
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (01) : 30 - 46
  • [12] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [13] Modelling and simulation of thermal runaway phenomenon in lithium-ion batteries
    Alshammari, Ali
    Al-Obaidi, Mudhar
    Staggs, John
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (02)
  • [14] Microcalorimetry Analysis of Thermal Runaway Process in Lithium-ion Batteries
    Gu Xiaoyu
    Li Jin
    Sun Qian
    Wang Chaoyang
    ACTA CHIMICA SINICA, 2024, 82 (02) : 146 - 151
  • [15] Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries
    Lee, Minseo
    You, Ji-sun
    Kang, Kyeong-sin
    Lee, Jaesung
    Bong, Sungyool
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2024, 27 (02): : 55 - 72
  • [16] Advances on Mechanism of Degradation and Thermal Runaway of Lithium-Ion Batteries
    Guo B.
    Liu X.
    He R.
    Gao X.
    Yan X.
    Yang S.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (02): : 225 - 239
  • [17] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [18] Review of polymers in the prevention of thermal runaway in lithium-ion batteries
    Allen, Jonathan
    ENERGY REPORTS, 2020, 6 : 217 - 224
  • [19] A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods
    Xu, Chengshan
    Fan, Zhuwei
    Zhang, Mengqi
    Wang, Peiben
    Wang, Huaibin
    Jin, Changyong
    Peng, Yong
    Jiang, Fachao
    Feng, Xuning
    Ouyang, Minggao
    CELL REPORTS PHYSICAL SCIENCE, 2023, 4 (12):
  • [20] Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-Ion Batteries
    Somandepalli, Vijay
    Marr, Kevin
    Horn, Quinn
    SAE INTERNATIONAL JOURNAL OF ALTERNATIVE POWERTRAINS, 2014, 3 (01) : 98 - 104