Effect of 2-D topography on the 3-D seismic wavefield using a 2.5-D discrete wavenumber-boundary integral equation method

被引:35
|
作者
Takenaka, H
Kennett, BLN
Fujiwara, H
机构
[1] AUSTRALIAN NATL UNIV,RES SCH EARTH SCI,CANBERRA,ACT 0200,AUSTRALIA
[2] NATL RES INST EARTH SCI & DISASTER PREVENT,TSUKUBA,IBARAKI 305,JAPAN
关键词
P waves; S waves; topography; wave propagation;
D O I
10.1111/j.1365-246X.1996.tb05635.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A full treatment of topographic effects on the seismic wavefield requires a 3-D treatment of the topography and a 3-D calculation for the wavefield. However, such full 3-D calculations are still very expensive to perform. An economical approach, which does not require the same level of computational resources as full 3-D modelling, is to examine the 3-D response of a model in which the heterogeneity pattern is 2-D (the so-called 2.5-D problem). Such 2.5-D methods can calculate 3-D wavefields without huge computer memory requirements, since they require storage nearly equal to that of the corresponding 2-D calculations. In this paper, we consider wave propagation from a point source in the presence of 2-D irregular topography, and develop a computational method for such 2.5-D wave-propagation problems. This approach is an extension to the 2.5-D case of the discrete wavenumber-boundary integral equation method introduced by Bouchon (1985) and Gaffet & Bouchon (1989) to study 2-D topographic problems. One of the most significant advantages of the 2.5-D calculations is that calculations are performed for a point source and so it is possible for us to take into account the 3-D radiation pattern from the source. We demonstrate that this discrete wavenumber-boundary integral equation procedure, coupled with a Green's function decomposition into P-and S-wave contributions, provides a flexible and effective means of evaluating the wavefield.
引用
收藏
页码:741 / 755
页数:15
相关论文
共 50 条