The augmented deformation space of rational maps

被引:2
|
作者
Hironaka, Eriko
机构
来源
PANORAMA OF SINGULARITIES | 2020年 / 742卷
关键词
THEOREM;
D O I
10.1090/conm/742/14940
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was recently shown that the Epstein deformation space of marked rational maps with prescribed combinatorial and dynamical structure can be disconnected. For example, the family of quadratic rational maps with a periodic critical cycle of order 4 and an extra critical value not lying in this cycle has a deformation space with infinitely many components. We study the structure of the augmented deformation space for this example, and show, in particular, that the closure of deformation space in augmented deformation space is also disconnected in this case.
引用
收藏
页码:85 / 107
页数:23
相关论文
共 50 条
  • [21] Regular polynomial automorphisms in the space of planar quadratic rational maps
    Kwon, Hyejin
    Lee, Chong Gyu
    Lee, Sang-Min
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (04)
  • [22] p-adic hyperbolic space and dynamics of rational maps
    Rivera-Letelier, J
    COMPOSITIO MATHEMATICA, 2003, 138 (02) : 199 - 231
  • [23] Augmented paper maps: Exploring the design space of a mixed reality system
    Paelke, Volker
    Sester, Monika
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (03) : 256 - 265
  • [24] RATIONAL MAPS WITH RATIONAL MULTIPLIERS
    Huguin, Valentin
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 591 - 599
  • [25] Dynamics of Commuting Rational Maps on Berkovich Projective Space over C
    Shi Lei FAN
    Yue Fei WANG
    Acta Mathematica Sinica,English Series, 2013, (08) : 1459 - 1478
  • [26] Back to the future: Rational maps for exploring acetylcholine receptor space and time
    Tessier, Christian J. G.
    Emlaw, Johnathon R.
    Cao, Zhuo Qian
    Perez-Areales, F. Javier
    Salameh, Jean-Paul J.
    Prinston, Jethro E.
    McNulty, Melissa S.
    daCosta, Corrie J. B.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2017, 1865 (11): : 1522 - 1528
  • [27] Dynamics of commuting rational maps on Berkovich projective space over ℂp
    Shi Lei Fan
    Yue Fei Wang
    Acta Mathematica Sinica, English Series, 2013, 29 : 1459 - 1478
  • [28] On the collection of integers that index the fixed points of maps on the space of rational functions
    Bennett, Curtis D.
    Mosteig, Edward
    TAPAS IN EXPERIMENTAL MATHEMATICS, 2008, 457 : 53 - 67
  • [29] Foldable Augmented Maps
    Martedi, Sandy
    Uchiyama, Hideaki
    Enriquez, Guillermo
    Saito, Hideo
    Miyashita, Tsutomu
    Hara, Takenori
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (01): : 256 - 266
  • [30] ON THE MINIMAL FIELD OF DEFINITION OF RATIONAL MAPS: RATIONAL MAPS OF ODD SIGNATURE
    Hidalgo, Ruben A.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 685 - 692