The augmented deformation space of rational maps

被引:2
|
作者
Hironaka, Eriko
机构
来源
PANORAMA OF SINGULARITIES | 2020年 / 742卷
关键词
THEOREM;
D O I
10.1090/conm/742/14940
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was recently shown that the Epstein deformation space of marked rational maps with prescribed combinatorial and dynamical structure can be disconnected. For example, the family of quadratic rational maps with a periodic critical cycle of order 4 and an extra critical value not lying in this cycle has a deformation space with infinitely many components. We study the structure of the augmented deformation space for this example, and show, in particular, that the closure of deformation space in augmented deformation space is also disconnected in this case.
引用
收藏
页码:85 / 107
页数:23
相关论文
共 50 条
  • [1] A DISCONNECTED DEFORMATION SPACE OF RATIONAL MAPS
    Hironaka, Eriko
    Koch, Sarah
    JOURNAL OF MODERN DYNAMICS, 2017, 11 : 409 - 423
  • [2] On deformation space analogies between Kleinian reflection groups and antiholomorphic rational maps
    Lodge, Russell
    Luo, Yusheng
    Mukherjee, Sabyasachi
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (06) : 1428 - 1485
  • [3] On deformation space analogies between Kleinian reflection groups and antiholomorphic rational maps
    Russell Lodge
    Yusheng Luo
    Sabyasachi Mukherjee
    Geometric and Functional Analysis, 2022, 32 : 1428 - 1485
  • [4] Contractibility of the space of rational maps
    Dennis Gaitsgory
    Inventiones mathematicae, 2013, 191 : 91 - 196
  • [5] Contractibility of the space of rational maps
    Gaitsgory, Dennis
    INVENTIONES MATHEMATICAE, 2013, 191 (01) : 91 - 196
  • [6] Iteration at the boundary of the space of rational maps
    Demarco, L
    DUKE MATHEMATICAL JOURNAL, 2005, 130 (01) : 169 - 197
  • [7] The moduli space of quadratic rational maps
    Demarco, Laura
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (02) : 321 - 355
  • [8] Automorphism loci for the moduli space of rational maps
    Miasnikov, Nikita
    Stout, Brian
    Williams, Phillip
    ACTA ARITHMETICA, 2017, 180 (03) : 267 - 296
  • [9] Variational Harmonic Maps for Space Deformation
    Ben-Chen, Mirela
    Weber, Ofir
    Gotsman, Craig
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03):
  • [10] Lebesgue ergodic rational maps in parameter space
    Hawkins, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06): : 1423 - 1447