Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size

被引:97
|
作者
Bargues, MD
Kiisiowicz, DR
Panzera, F
Noireau, F
Marcilla, A
Perez, R
Rojas, MG
O'Connor, JE
Gonzalez-Candelas, F
Galvao, C
Jurberg, J
Carcavallo, RU
Dujarding, JP
Mas-Coma, S
机构
[1] Univ Valencia, Fac Farm, Dept Parasitol, E-46100 Burjassot, Spain
[2] Univ Republica, Fac Ciencias, Inst Biol, Secc Genet Evolut, Montevideo 11400, Uruguay
[3] Inst Oswaldo Cruz, Dept Entomol, Lab Nacl & Int Referencia Taxon Triatomineos, BR-21045900 Rio De Janeiro, Brazil
[4] IRD, URO16, F-34032 Montpellier 1, France
[5] Univ Valencia, Fac Med & Odontol, Ctr Citometria & Citom, Dept Bioquim & Biol Mol, Valencia 46010, Spain
[6] Univ Valencia, Inst Cavanilles Biodiversidad & Biol Evolut, Dept Genet, Valencia 46071, Spain
[7] IRD, CNRS, UMR 9926, IRD,ORSTOM, F-34032 Montpellier 1, France
关键词
Chagas disease; triatoma infestans subcomplex rDNA ITS-1. 5.8S and ITS-2 sequences; DNA quantification; flow cytometry; population genetics analysis; molecular clock; phylogeography;
D O I
10.1016/j.meegid.2005.01.006
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
For about half of all Chagas disease cases T. infestans has been the responsible vector. Contributing to its genetic knowledge will increase Our understanding of the capacity of geographic expansion and domiciliation of triatomines. Populations of all infestans subcomplex species, T. infestans, T. delpontei, T. platensis and T. melanosoma and the so-called T. infestans "dark morph", from many South American countries were studied. A total of 10 and 7 different ITS-2 and ITS-1 haplotypes, respectively, were found. The total intraspecific ITS-2 nucleotide variability detected in T. infestans is the highest hitherto known in triatomines. ITS-1 minisatellites, detected for the first time in triatomines, proved to be homologous and thus become useful markers. Calculations show that ITS-1 evolves 1.12-2.60 times faster than ITS-2. Despite all species analyzed presenting the same n = 22 chromosome number, a large variation of the haploid DNA content was found, including a strikingly high DNA content difference between Andean and non-Andean specimens of T. infestans (mean reduction of 30%, with a maximum of up to 40%) and a correlation between presence/absence of minisatellites and larger/smaller genome size. Population genetics analysis of the eight composite haplotypes of T. infestans and net differences corroborate that there are clear differences between western and eastern populations (60%), and little genetic variation among populations (1.3%) and within populations (40%) within these two groups with migration rates larger than one individual per generation corresponding only to pairs of populations one from each of these groups. These values are indicative either of a large enough gene flow to prevent population differentiation by drift within each geographic area or a very recent spread, the latter hypothesis fitting available data better. Phylogenetic trees support a common ancestor for T. infestans and T. platensis, an origin of T. infestans in Bolivian highlands and two different dispersal lines, one throughout Andean regions of Bolivia and Peru and another in non-Andean lowlands of Chile, Paraguay, Argentina, Uruguay and Brazil. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 62
页数:17
相关论文
共 50 条
  • [31] Reproductive and developmental costs of deltamethrin resistance in the Chagas disease vector Triatoma infestans
    Daniela Germano, Monica
    Ines Picollo, Maria
    JOURNAL OF VECTOR ECOLOGY, 2015, 40 (01) : 59 - 65
  • [32] The epidemiology of the chagas disease vector, triatoma infestans, in a periurban community, arequipa, Peru
    Levy, Michael Z.
    Bowman, Natalie
    Kawai, Vivian
    Waller, Lance
    Cordova, Eleazer
    del Carpio, Juan Cornejo
    Gilman, Robert
    Bern, Caryn
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2005, 73 (06): : 26 - 26
  • [33] Histone epigenetic marks in heterochromatin and euchromatin of the Chagas' disease vector, Triatoma infestans
    Alvarenga, Elenice M.
    Rodrigues, Vera L. C. C.
    Moraes, Alberto S.
    Naves, Luisa S.
    Mondin, Mateus
    Felisbino, Marina B.
    Mello, Maria Luiza S.
    ACTA HISTOCHEMICA, 2016, 118 (04) : 401 - 412
  • [34] Thermal performance of the Chagas disease vector, Triatoma infestans, under thermal variability
    Clavijo-Baquet, Sabrina
    Cavieres, Grisel
    Gonzalez, Avia
    Cattan, Pedro E.
    Bozinovic, Francisco
    PLOS NEGLECTED TROPICAL DISEASES, 2021, 15 (02):
  • [35] Temperature Effects in Thermal Tolerance of the Chagas Disease Vector, Triatoma infestans.
    Clavijo-Baquet, S.
    Cavieres, G.
    Gonzalez, A.
    Cattan, P.
    Bozinovic, F.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2018, 58 : E294 - E294
  • [36] Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata
    Dong, Li
    Ma, Xiaoling
    Wang, Mengfei
    Zhu, Dan
    Feng, Yuebiao
    Zhang, Yi
    Wang, Jingwen
    KOREAN JOURNAL OF PARASITOLOGY, 2018, 56 (05): : 515 - 519
  • [37] Intensified Surveillance and Insecticide-based Control of the Chagas Disease Vector Triatoma infestans in the Argentinean Chaco
    Gurevitz, Juan M.
    Sol Gaspe, Maria
    Enriquez, Gustavo F.
    Provecho, Yael M.
    Kitron, Uriel
    Guertler, Ricardo E.
    PLOS NEGLECTED TROPICAL DISEASES, 2013, 7 (04):
  • [38] Temperature and relative humidity affect the selection of shelters by Triatoma infestans, vector of Chagas disease
    Lorenzo, MG
    Lazzari, CR
    ACTA TROPICA, 1999, 72 (03) : 241 - 249
  • [39] EMBRYOLOGY OF TRIATOMA-INFESTANS (KLUG), (HEMIPTERA, REDUVIIDAE), A CHAGAS-DISEASE VECTOR
    FICHERA, LE
    RIARTE, A
    REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO, 1992, 34 (03): : 211 - 216
  • [40] An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease
    Assumpcao, Teresa C. F.
    Francischetti, Ivo M. B.
    Andersen, John F.
    Schwarz, Alexandra
    Santana, Jaime M.
    Ribeiro, Jose M. C.
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2008, 38 (02) : 213 - 232