PACKING NUMBERS OF RATIONAL RULED FOUR-MANIFOLDS

被引:0
|
作者
Buse, Olguta [1 ]
Pinsonnault, Martin [2 ]
机构
[1] IUPUI, Dept Math Sci, Indianapolis, IN USA
[2] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely solve the symplectic packing problem with equally sized balls for any rational, ruled, symplectic four-manifolds. We give explicit formulae for the packing numbers, the generalized Gromov widths, the stability numbers, and the corresponding obstructing exceptional classes. As a corollary, we give explicit values for when an ellipsoid of type E(a, b), with b/a is an element of N, embeds in a polydisc P(s, t). Under this integrality assumption, we also give an alternative proof of a recent result of M. Hutchings showing that the embedded contact homology capacities give sharp inequalities for embedding ellipsoids into polydisks.
引用
收藏
页码:269 / 316
页数:48
相关论文
共 50 条
  • [41] Twisted index on hyperbolic four-manifolds
    Iannotti, Daniele
    Pittelli, Antonio
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (02)
  • [42] Superconformal invariance and the geography of four-manifolds
    Mariño, M
    Moore, G
    Peradze, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (03) : 691 - 735
  • [43] FOUR-MANIFOLDS OF PINCHED SECTIONAL CURVATURE
    Cao, Xiaodong
    Tran, Hung
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (01) : 17 - 38
  • [44] Curvature decompositions on Einstein four-manifolds
    Wu, Peng
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1739 - 1749
  • [45] Superconformal Invariance and the Geography¶of Four-Manifolds
    Marcos Mariño
    Gregory Moore
    Grigor Peradze
    Communications in Mathematical Physics, 1999, 205 : 691 - 735
  • [46] On Tamed Almost Complex Four-Manifolds
    Qiang Tan
    Hongyu Wang
    Jiuru Zhou
    Peng Zhu
    Peking Mathematical Journal, 2022, 5 (1) : 37 - 152
  • [47] Stable prime decompositions of four-manifolds
    Kreck, M
    Luck, W
    Teichner, P
    PROSPECTS IN TOPOLOGY, 1995, (138): : 251 - 269
  • [48] Minimality and irreducibility of symplectic four-manifolds
    Hamilton, M. J. D.
    Kotschick, D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [49] Killing superalgebras for Lorentzian four-manifolds
    de Medeiros, Paul
    Figueroa-O'Farrill, Jose
    Santi, Andrea
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [50] Twistors in conformally flat Einstein four-manifolds
    Esposito, G
    Pollifrone, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1996, 5 (05): : 481 - 493