Fourth Moment Theorem and q-Brownian Chaos

被引:12
|
作者
Deya, Aurelien [1 ]
Noreddine, Salim [2 ]
Nourdin, Ivan [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 5, France
关键词
CENTRAL LIMIT-THEOREMS; RESPECT;
D O I
10.1007/s00220-012-1631-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In 2005, Nualart and Peccati (Ann Probab 33(1):177-193, 2005) proved the so-called Fourth Moment Theorem asserting that, for a sequence of normalized multiple Wiener-It integrals to converge to the standard Gaussian law, it is necessary and sufficient that its fourth moment tends to 3. A few years later, Kemp et al. (Ann Probab 40(4):1577-1635, 2011) extended this theorem to a sequence of normalized multiple Wigner integrals, in the context of the free Brownian motion. The q-Brownian motion, , introduced by the physicists Frisch and Bourret (J Math Phys 11:364-390, 1970) in 1970 and mathematically studied by BoA1/4ejko and Speicher (Commun Math Phys 137:519-531, 1991), interpolates between the classical Brownian motion (q = 1) and the free Brownian motion (q = 0), and is one of the nicest examples of non-commutative processes. The question we shall solve in this paper is the following: what does the Fourth Moment Theorem become when dealing with a q-Brownian motion?.
引用
收藏
页码:113 / 134
页数:22
相关论文
共 50 条
  • [31] Characterisation of Planar Brownian Multiplicative Chaos
    Antoine Jego
    Communications in Mathematical Physics, 2023, 399 : 971 - 1019
  • [32] Microscopic chaos from brownian motion?
    P. Gaspard
    M. E. Briggs
    M. K. Francis
    J. V. Sengers
    R. W. Gammon
    J. R. Dorfman
    R. V. Calabrese
    Nature, 1999, 401 : 876 - 876
  • [33] The role of chaos and resonances in Brownian motion
    Realpe, John
    Ordonez, Gonzalo
    CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 179 - +
  • [34] Necessary and sufficient restrictions for existence of a unique fourth moment of a univariate GARCH(p,q) process
    Zadrozny, PA
    ECONOMETRIC ANALYSIS OF FINANCIAL AND ECONOMIC TIME SERIES, 2006, 20 : 365 - 379
  • [35] FOURTH MOMENT OF DIFFRACTION PROFILES
    MITRA, GB
    BRITISH JOURNAL OF APPLIED PHYSICS, 1964, 15 (08): : 917 - &
  • [36] The complications of the fourth central moment
    Dodge, Y
    Rousson, V
    AMERICAN STATISTICIAN, 1999, 53 (03): : 267 - 269
  • [38] Microscopic chaos from brownian motion?
    Peter Grassberger
    Thomas Schreiber
    Nature, 1999, 401 : 875 - 876
  • [39] On the problems of the Fourth moment method
    Zhao, YG
    Ono, T
    STRUCTURAL SAFETY, 2004, 26 (03) : 343 - 347
  • [40] Multiplicative chaos of the Brownian loop soup
    Aidekon, Elie
    Berestycki, Nathanael
    Jego, Antoine
    Lupu, Titus
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (04) : 1254 - 1393