Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review

被引:326
|
作者
Khodadadi, J. M. [1 ]
Fan, Liwu [1 ]
Babaei, Hasan [1 ]
机构
[1] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
来源
关键词
Fusible materials; Melting; Nanofillers; Nanostructures; Phase change materials; Phase transformation; Solidification; Thermal conductivity enhancers; PALMITIC ACID; COMPOSITES; NANOCOMPOSITES; NANOFLUID; BEHAVIOR; MWNTS;
D O I
10.1016/j.rser.2013.03.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A review of studies focused on enhancing the thermal conductivity of phase change materials (PCM) for thermal energy storage upon introduction of nanostructures is presented. These emerging materials have only been studied since 2005 and represent a clear departure from previous/existing practices of utilizing fixed, stationary high-conductivity inserts/structures into PCM. Carbon-based nanostructures (nanofibers, nanoplatelets and graphene flakes), carbon nanotubes, both metallic (Ag, Al, C/Cu and Cu) and metal oxide (Al2O3, CuO, MgO and TiO2) nanoparticles and silver nanowires have been explored as the materials of the thermal conductivity promoters. Emphasis of the work so far has been placed on the dependence of the enhanced thermal conductivity on mass fraction of the nanostructures and temperature for both liquid and solid phases, however issues related to modifications of the degree of supercooling, melting temperature, viscosity, heat of fusion, etc. are also reported. In general, carbon-based nanostructures and carbon nanotubes exhibit far greater enhancement of thermal conductivity in comparison to metallic/metal oxide nanoparticles due to the high aspect-ratio of these nanofillers. Utilizing a figure of merit for the observed thermal conductivity enhancement, the majority of 340+ measured data points in both liquid and solid phases are summarized. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:418 / 444
页数:27
相关论文
共 50 条
  • [21] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    Journal of Energy Storage, 2022, 55
  • [22] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02): : 318 - 345
  • [23] Thermal Enhancement of Solar Energy Storage Using Phase Change Materials
    Darwesh, Bahzad Darwesh
    Hamakhan, Idres Azzat
    Yaqob, Banipal Nanno
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (03) : 758 - 766
  • [24] Thermal conductivity enhancement for phase change storage media
    Univ of Kentucky, Lexington, United States
    Int Commun Heat Mass Transfer, 1 (91-100):
  • [25] Thermal conductivity enhancement for phase change storage media
    Chow, LC
    Zhong, JK
    Beam, JE
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1996, 23 (01) : 91 - 100
  • [26] Performance enhancement with inorganic phase change materials for the application of thermal energy storage: A critical review
    Kundu, Rohan
    Kar, Satya Prakash
    Sarangi, Radhakanta
    ENERGY STORAGE, 2022, 4 (05)
  • [27] INVESTIGATIONS ON PHASE CHANGE MATERIALS FOR ENHANCEMENT OF THERMAL CONDUCTIVITY
    Janumala, Emeema
    Govindarajan, Murali
    Reddi, Venkateswara Reddi Bomma
    Chinnasamy, Sivakandhan
    THERMAL SCIENCE, 2022, 26 (02): : 955 - 961
  • [28] Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review
    Ibrahim, Nasiru I.
    Al-Sulaiman, Fahad A.
    Rahman, Saidur
    Yilbas, Bekir S.
    Sahin, Ahmet Z.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 74 : 26 - 50
  • [29] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [30] Novel composite phase change materials with enhancement of light-thermal conversion, thermal conductivity and thermal storage capacity
    Zhang, Jiasheng
    Wang, Zongming
    Li, Xiangqi
    Wu, Xiao
    SOLAR ENERGY, 2020, 196 : 419 - 426