A time-domain symplectic method for finite viscoelastic cylinders

被引:2
|
作者
Zhang, Weixiang [1 ,2 ]
Wang, Hui [1 ]
Yuan, Fang [1 ]
机构
[1] Henan Univ Technol, Inst Sci & Engn Computat, Zhengzhou 450052, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
关键词
Viscoelastic; Symplectic method; Eigenvector; SAINT-VENANT PROBLEM; LINEAR VISCOELASTICITY; PART I; BEHAVIOR; ELASTICITY; STRIP;
D O I
10.1007/s11043-012-9183-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The symplectic method is introduced for boundary-condition problems of finite viscoelastic cylinders. On the basis of the state space formalism and the use of the Laplace integral transform, the general solution of the governing equations, zero- and nonzero-eigenvalue eigenvectors, are obtained. Since the eigenvectors are expressed in concise analytical forms, the adjoint symplectic relation of the Laplace domain is generalized to the time domain. Therefore, the particular solution and the eigenvector expansion method can be discussed directly in the eigenvector space of the time domain, without employing the iterative application of the inverse Laplace transformation. Using this method, various boundary conditions, the particular solution of nonhomogeneous equations, especially the interfacial continuity conditions of composite materials, can be conveniently described by combinations of the eigenvectors.
引用
收藏
页码:243 / 260
页数:18
相关论文
共 50 条
  • [21] Keywords: symplectic finite-difference time-domain method, spatial filtering, time stability condition, Schrödinger equation
    Xie, Guo-Da
    Pan, Pan
    Xin, Ren
    Feng, Nai-Xing
    Ming, Fang
    Li, Ying-Song
    Huang, Zhi-Xiang
    ACTA PHYSICA SINICA, 2024, 73 (03)
  • [22] A time-domain finite element method for Helmholtz equations
    Van, T
    Wood, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) : 486 - 507
  • [23] On the stability of the finite-difference time-domain method
    Remis, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261
  • [24] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [25] Time-domain analysis of viscoelastic systems
    Rouleau, Lucie
    Deu, Jean-Francois
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 384 - 390
  • [26] Application of symplectic finite-difference time-domain scheme for anisotropic magnetised plasma
    He, Zhi-Fang
    Liu, Song
    Chen, Sheng
    Zhong, Shuang-Ying
    IET MICROWAVES ANTENNAS & PROPAGATION, 2017, 11 (05) : 600 - 606
  • [27] Survey on symplectic finite-difference time-domain schemes for Maxwell's equations
    Sha, Wei E. I.
    Huang, Zhixiang
    Chen, Mingsheng
    Wu, Xianliang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (02) : 493 - 500
  • [28] DYNAMIC FINITE-ELEMENT ANALYSIS OF VISCOELASTIC COMPOSITE PLATES IN THE TIME-DOMAIN
    YI, S
    HILTON, HH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (23) : 4081 - 4096
  • [29] Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm
    Yao, Weian
    Li, Xiang
    Hu, Xiaofei
    INTERNATIONAL JOURNAL OF FRACTURE, 2018, 214 (01) : 29 - 48
  • [30] Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm
    Weian Yao
    Xiang Li
    Xiaofei Hu
    International Journal of Fracture, 2018, 214 : 29 - 48