A time-domain symplectic method for finite viscoelastic cylinders

被引:2
|
作者
Zhang, Weixiang [1 ,2 ]
Wang, Hui [1 ]
Yuan, Fang [1 ]
机构
[1] Henan Univ Technol, Inst Sci & Engn Computat, Zhengzhou 450052, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
关键词
Viscoelastic; Symplectic method; Eigenvector; SAINT-VENANT PROBLEM; LINEAR VISCOELASTICITY; PART I; BEHAVIOR; ELASTICITY; STRIP;
D O I
10.1007/s11043-012-9183-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The symplectic method is introduced for boundary-condition problems of finite viscoelastic cylinders. On the basis of the state space formalism and the use of the Laplace integral transform, the general solution of the governing equations, zero- and nonzero-eigenvalue eigenvectors, are obtained. Since the eigenvectors are expressed in concise analytical forms, the adjoint symplectic relation of the Laplace domain is generalized to the time domain. Therefore, the particular solution and the eigenvector expansion method can be discussed directly in the eigenvector space of the time domain, without employing the iterative application of the inverse Laplace transformation. Using this method, various boundary conditions, the particular solution of nonhomogeneous equations, especially the interfacial continuity conditions of composite materials, can be conveniently described by combinations of the eigenvectors.
引用
收藏
页码:243 / 260
页数:18
相关论文
共 50 条
  • [1] A time-domain symplectic method for finite viscoelastic cylinders
    Weixiang Zhang
    Hui Wang
    Fang Yuan
    Mechanics of Time-Dependent Materials, 2013, 17 : 243 - 260
  • [2] Symplectic finite-difference time-domain method for Maxwell equations
    Jiang, Le-Le
    Mao, Jun-Fa
    Wu, Xian-Liang
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (08) : 1991 - 1995
  • [3] High Stability Symplectic Filtered Finite-difference Time-domain Method
    Zhang, Gaochao
    Huang, Zhixiang
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 1486 - 1486
  • [4] Stability of symplectic finite-difference time-domain methods
    Saitoh, I
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 665 - 668
  • [5] The symplectic finite difference time domain method
    Saitoh, I
    Suzuki, Y
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3251 - 3254
  • [6] Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
    Gang Fang
    Jing Ba
    Xin-xin Liu
    Kun Zhu
    Guo-Chang Liu
    Applied Geophysics, 2017, 14 : 258 - 269
  • [7] Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
    Fang, Gang
    Ba, Jing
    Liu, Xin-xin
    Zhu, Kun
    Liu, Guo-Chang
    APPLIED GEOPHYSICS, 2017, 14 (02) : 258 - 269
  • [8] A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems
    Goncalves de Lima, Antonio Marcos
    Bouhaddi, Noureddine
    Rade, Domingos Alves
    Belonsi, Marcelo
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2015, 12 (06): : 1182 - 1201
  • [9] Application of the symplectic finite-difference time-domain method to light scattering by small particles
    Zhai, PW
    Kattawar, GW
    Yang, P
    Li, CH
    APPLIED OPTICS, 2005, 44 (09) : 1650 - 1656
  • [10] Finite-difference time-domain method with conformal meshes for scattering analysis of conducting cylinders
    Shao, ZH
    Hong, W
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 612 - 615