Vertex implications for totally nonnegative matrices

被引:0
|
作者
Garloff, J
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered are matrix intervals, i.e. families of real matrices which are known to lie between two given matrices, the so-called corner matrices. Here the underlying partial ordering is the chequerboard partial ordering. We present conditions under which total nonnegativity can be ascertained for a matrix interval by checking only a subset of the vertex matrices, i.e. matrices with entries from the corner matrices. It turns out that in many cases inspection of only the two corner matric:es is sufficient.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [31] Multiplicative principal-minor inequalities for totally nonnegative matrices
    Fallat, SM
    Gekhtman, MI
    Johnson, CR
    ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (03) : 442 - 470
  • [32] A finite-step construction of totally nonnegative matrices with specified eigenvalues
    Kanae Akaiwa
    Yoshimasa Nakamura
    Masashi Iwasaki
    Hisayoshi Tsutsumi
    Koichi Kondo
    Numerical Algorithms, 2015, 70 : 469 - 484
  • [33] A finite-step construction of totally nonnegative matrices with specified eigenvalues
    Akaiwa, Kanae
    Nakamura, Yoshimasa
    Iwasaki, Masashi
    Tsutsumi, Hisayoshi
    Kondo, Koichi
    NUMERICAL ALGORITHMS, 2015, 70 (03) : 469 - 484
  • [34] Convergence Acceleration of Shifted LR Transformations for Totally Nonnegative Hessenberg Matrices
    Akiko Fukuda
    Yusaku Yamamoto
    Masashi Iwasaki
    Emiko Ishiwata
    Yoshimasa Nakamura
    Applications of Mathematics, 2020, 65 : 677 - 702
  • [35] Accurate eigenvalues and exact zero Jordan blocks of totally nonnegative matrices
    Plamen Koev
    Numerische Mathematik, 2019, 141 : 693 - 713
  • [36] ON A SCHUR COMPLEMENT INEQUALITY FOR THE HADAMARD PRODUCT OF CERTAIN TOTALLY NONNEGATIVE MATRICES
    Yang, Zhongpeng
    Feng, Xiaoxia
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 214 - 224
  • [37] An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues
    Kanae Akaiwa
    Yoshimasa Nakamura
    Masashi Iwasaki
    Akira Yoshida
    Koichi Kondo
    Numerical Algorithms, 2017, 75 : 1079 - 1101
  • [38] Inequalities for totally nonnegative matrices: Gantmacher-Krein, Karlin, and Laplace
    Fallat, Shaun M.
    Vishwakarma, Prateek Kumar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 694 : 360 - 413
  • [40] An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues
    Akaiwa, Kanae
    Nakamura, Yoshimasa
    Iwasaki, Masashi
    Yoshida, Akira
    Kondo, Koichi
    NUMERICAL ALGORITHMS, 2017, 75 (04) : 1079 - 1101