Exploiting poly(e-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites

被引:20
|
作者
Vilela, Carla [1 ]
Engstrom, Joakim [2 ,3 ]
Valente, Bruno F. A. [1 ]
Jawerth, Marcus [2 ,3 ]
Carlmark, Anna [2 ]
Freire, Carmen S. R. [1 ]
机构
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Chem, P-3810193 Aveiro, Portugal
[2] KTH Royal Inst Technol, KTH Sch Engn Sci Chem Biotechnol & Hlth, Div Coating Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden
[3] KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
关键词
ENZYMATIC DEGRADATION; BLOCK-COPOLYMER; COMPOSITES;
D O I
10.1002/pc.24865
中图分类号
TB33 [复合材料];
学科分类号
摘要
This study reports the development of nanocomposites based on poly(e-caprolactone) (PCL) and cellulose nanofibrils (CNF) modified with cationic latex nanoparticles. The physical adsorption of these water-based latexes on the surface of CNF was studied as an environment-friendly strategy to enhance the compatibility of CNF with a hydrophobic polymeric matrix. The latexes are composed of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) as the hydrophilic block, and either poly(methyl methacrylate) or poly(n-butyl methacrylate) as the hydrophobic block. The simple and practical melt-mixing of PCL- and latex-modified CNF yielded white homogeneous nanocomposites with complete embedment of the nanofibrils in the thermoplastic matrix. All nanocomposites are semicrystalline materials with good mechanical properties (Young's modulus = 43.6-52.3 MPa) and thermal stability up to 335-340 degrees C. Degradation tests clearly showed that the nanocomposites slowly degrade in the presence of lipase-type enzyme. These PCL/CNF-latex nanocomposite materials show great promise as future environmentally friendly packaging materials. POLYM. COMPOS., 40:1342-1353, 2019. (c) 2018 Society of Plastics Engineers
引用
收藏
页码:1342 / 1353
页数:12
相关论文
共 50 条
  • [41] Development of antibacterial nanocomposites by combination of bacterial cellulose/chitin nanofibrils and all-natural bioactive nanoparticles
    Mei, Yuqi
    Yang, Yunyi
    Gao, Ruohang
    Xu, Mengyue
    Li, Qing
    Wan, Zhili
    Yang, Xiaoquan
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 7
  • [42] Cinnamyl-Modified Polyglycidol/Poly(e-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol
    Toncheva-Moncheva, Natalia
    Dimitrov, Erik
    Grancharov, Georgi
    Momekova, Denitsa
    Petrov, Petar
    Rangelov, Stanislav
    PHARMACEUTICS, 2023, 15 (08)
  • [43] Characterization of the Microstructure and Mode I Fracture Property of Biodegradable Poly(L-lactic acid) and Poly(E-caprolactone) Polymer Blends with the Additive Lysine Triisocyanate
    Vilay, Vannaladsaysy
    Mustapha, Mariatti
    Ahmad, Zulkifli
    Mitsugu, Todo
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (08) : 768 - 773
  • [44] A Surface-Modified Poly(e-caprolactone) Scaffold Comprising Variable Nanosized Surface-Roughness Using a Plasma Treatment
    Jeon, HoJun
    Lee, Hyeongjin
    Kim, GeunHyung
    TISSUE ENGINEERING PART C-METHODS, 2014, 20 (12) : 951 - 963
  • [45] Fabrication of fibrous poly (e-caprolactone) nano-fibers containing cerium doped-bioglasses nanoparticles encapsulated collagen
    Sahrapeyma, Hamed
    Asefnejad, Azadeh
    Azami, Mahmoud
    Sadroddiny, Esmaeil
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (41)
  • [46] Synthesis of biocompatible poly(e-caprolactone)-block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles
    Nanaki, Stavroula G.
    Pantopoulos, Kostas
    Bikiaris, Dimitrios N.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 2981 - 2995
  • [47] Synthesis of colloidal superparamagnetic nanocomposites by grafting poly(ε-caprolactone) from the surface of organosilane-modified maghemite nanoparticles
    Flesch, C
    Bourgeat-Lami, E
    Mornet, S
    Duguet, E
    Delaite, C
    Dumas, P
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (15) : 3221 - 3231
  • [48] Using poly(l-lactic acid) and poly(e-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair
    Tatu, Rigwed
    Oria, Marc
    Pulliam, Sarah
    Signey, Lorenzo
    Rao, Marepalli B.
    Peiro, Jose L.
    Lin, Chia-Ying
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (02) : 295 - 305
  • [49] Design and manufacturing a tubular structures based on poly(e-caprolactone) / poly(glycerol-sebacic acid) biodegradable nanocomposite blends: suggested for applications in the nervous, vascular and renal tissue engineering
    Davoodi, Behnam
    Goodarzi, Vahabodin
    Hosseini, Hadi
    Tirgar, Mahtab
    Shojaei, Shahrokh
    Asefnejad, Azadeh
    Saeidi, Ardeshir
    Oroojalian, Fatemeh
    Zamanlui, Soheila
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (02)
  • [50] Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(l-lactide)/poly(e-caprolactone) and poly(l-lactide)/ poly(butylene succinate-co-l-lactate) polymeric blends
    Vilay, V.
    Mariatti, M.
    Ahmad, Zulkifli
    Pasomsouk, K.
    Todo, Mitsugu
    Journal of Applied Polymer Science, 2009, 114 (03): : 1784 - 1792