Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector

被引:43
|
作者
Valizadeh, Mohammad [1 ]
Sarhaddi, Faramarz [1 ]
Adeli, Mohsen Mandavi [1 ]
机构
[1] Univ Sistan & Baluchestan, Res Lab Renewable Energies & Electromagnet Fluids, Dept Mech Engn, Zahedan, Iran
关键词
Parabolic trough photovoltaic thermal collector; CPVT; Exergy analysis; Numerical simulation;
D O I
10.1016/j.renene.2019.02.039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents the exergy performance assessment of a linear parabolic trough photovoltaic thermal collector. The governing equations of a concentrating photovoltaic thermal collector (CPVT) are obtained through an energy balance for the various components of the system. The electrical analysis of PV cells is carried out by a four-parameter model of current-voltage. By introducing the various exergy components in the system, the system exergy efficiency is obtained. The simulation results of present study are in good agreement with previous studies data. The results show that the exergy efficiency variation with respect to the fluid velocity and channel diameter is negligible. Increasing fluid velocity from 0.08 to 0.43 m/s increases the electrical efficiency and thermal efficiency 1.05% and 2.2%, respectively. An increase of receiver width from 0.06 to 0.2 m increases the exergy efficiency and thermal efficiency by 1.47%, and 9.4%, respectively. Increasing channel diameter from 0.017 to 0.06 m increases the thermal efficiency and electrical efficiency 2.75% and 3.9%, respectively. By increasing the collector length from 3 to 90 m initially the thermal efficiency increases to 62.5% and then decreases to 60%. The exergy efficiency has a slight change with increasing collector length. An increase of fluid inlet temperature from 20 to 90 degrees C increases the exergy efficiency by 8.2%. Meanwhile, the thermal and electrical efficiencies reduce by 6.5% and 3.35%, respectively. An increase of the incident beam radiation from 50 to 1000 W/m(2) enhances the electrical efficiency by 6.6% and increases the exergy efficiency by 15.7%, while the thermal efficiency has an ascending/descending trend. The increase of ambient temperature increases the exergy efficiency and thermal efficiency by 7.6% and 5.1%, respectively. The impact of receiver width and ambient temperature on electrical efficiency is negligible. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1028 / 1041
页数:14
相关论文
共 50 条
  • [11] Numerical Study on Thermal Performance of Solar Parabolic Trough Collector
    Ghasemi, Seyed Ebrahim
    Ranjbar, Ali Akbar
    Ramiar, Abbas
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 7 (01): : 1 - 12
  • [12] Thermal Study of a Parabolic Trough Collector
    Messadi, Asma
    Timoumi, Youssef
    Design and Modeling of Mechanical Systems - II, 2015, : 811 - 821
  • [13] Performance Analysis of a Parabolic Trough Collector with Photovoltaic-Thermal Generation: Case Study and Parametric Study
    Chavarria-Dominguez, Benjamin
    De Leon-Aldaco, Susana Estefany
    Ponce-Silva, Mario
    Velazquez-Limon, Nicolas
    Aguilar-Jimenez, Jesus Armando
    Chavarria-Dominguez, Fernando
    Rodriguez-Garcia, Ernesto Raul
    Adamas-Perez, Heriberto
    Lozoya-Ponce, Ricardo Eliu
    Flores-Rodriguez, Eligio
    ENERGIES, 2025, 18 (02)
  • [14] Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector
    Soltani, Shohreh
    Kasaeian, Alibakhsh
    Sokhansefat, Tahmineh
    Shafii, Mohammad Behshad
    ENERGY CONVERSION AND MANAGEMENT, 2018, 159 : 371 - 380
  • [15] PERFORMANCE ANALYSIS OF PARABOLIC TROUGH CONCENTRATING PHOTOVOLTAIC THERMAL SYSTEM
    Manokar, A. Muthu
    Winston, D. Prince
    Vimala, M.
    INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY (ICETEST - 2015), 2016, 24 : 485 - 491
  • [16] Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system
    Srivastava, Shreekant
    Reddy, K. S.
    SOLAR ENERGY, 2017, 149 : 195 - 213
  • [17] Thermal performance analysis of novel receiver for parabolic trough solar collector
    Shinde, Tukaram U.
    Dalvi, Vishwanath H.
    Patil, Ramchandra G.
    Mathpati, Channamallikarjun S.
    V. Panse, Sudhir
    Joshi, Jyeshtharaj B.
    ENERGY, 2022, 254
  • [18] Enhancing the performance of a parabolic trough collector with combined thermal and optical techniques
    Bellos, Evangelos
    Tzivanidis, Christos
    APPLIED THERMAL ENGINEERING, 2020, 164 (164)
  • [19] Thermal performance enhancement of a novel receiver for parabolic trough solar collector
    Justin Byiringiro
    Meriem Chaanaoui
    Belkheir Hammouti
    Byiringiro, Justin (j.byiringiro@ueuromed.org), 2025, 246 (01)
  • [20] Thermal performance of a parabolic trough collector with a longitudinal externally finned absorber
    Hegazy, AS
    HEAT AND MASS TRANSFER, 1995, 31 (1-2): : 95 - 103