atom spectrum;
Grothendieck category;
localising subcategory;
CLASSIFYING SUBCATEGORIES;
MODULES;
D O I:
10.1017/S0004972716000563
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A be a locally noetherian Grothendieck category. We construct closure operators on the lattice of subcategories of A and the lattice of subsets of ASpec A in terms of associated atoms. This establishes a one-to-one correspondence between hereditary torsion theories of A and closed subsets of ASpec A. If A is locally stable, then the hereditary torsion theories can be studied locally. In this case, we show that the topological space ASpec A is Alexandroff.
机构:
Romanian Acad, Simion Stoilow Inst Math, Res Unit 5, RO-010145 Bucharest 1, RomaniaRomanian Acad, Simion Stoilow Inst Math, Res Unit 5, RO-010145 Bucharest 1, Romania
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, JapanOsaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-90046900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-90046900 Porto Alegre, RS, Brazil
Cortes, Wagner
Rodrigues, Virginia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Dept Matemat, Florianopolis, SC, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-90046900 Porto Alegre, RS, Brazil
Rodrigues, Virginia
Sant'Ana, Alveri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-90046900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-90046900 Porto Alegre, RS, Brazil
Sant'Ana, Alveri
GROUPS, ALGEBRAS AND APPLICATIONS,
2011,
537
: 137
-
+