On Nordhaus-Gaddum type inequalities for the game chromatic and game coloring numbers

被引:2
|
作者
Charpentier, Clement [1 ]
Dantas, Simone [2 ]
de Figueiredo, Celina M. N. [3 ]
Furtado, Ana [4 ]
Gravier, Sylvain [5 ]
机构
[1] Univ Grenoble Alpes, Grenoble, France
[2] Univ Fed Fluminense, IME, Niteroi, RJ, Brazil
[3] Univ Fed Rio de Janeiro, COPPE, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, CEFET RJ COPPE, Rio De Janeiro, Brazil
[5] Univ Grenoble Alpes, CNRS, Grenoble, France
关键词
Nordhaus-Gaddum type inequalities; Coloring game; Marking game; GRAPHS;
D O I
10.1016/j.disc.2019.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A seminal result by Nordhaus and Gaddum states that 2 root n <= chi(G) + chi((G) over bar) <= n + 1 for every graph G of order n, where (G) over bar is the complement of G and chi is the chromatic number. We study similar inequalities for chi(g)(G) and col(g)(G), which denote, respectively, the game chromatic number and the game coloring number of G. Those graph invariants give the score for, respectively, the coloring and marking games on G when both players use their best strategies. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1318 / 1324
页数:7
相关论文
共 50 条
  • [41] On the ordering of trees with the general Randic index of the Nordhaus-Gaddum type
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 55 (02) : 419 - 426
  • [42] Note on Nordhaus-Gaddum problems for Colin de Verdiere type parameters
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [43] New Improved Bounds for Signless Laplacian Spectral Radius and Nordhaus-Gaddum Type Inequalities for Agave Class of Graphs
    Malathy, V
    Desikan, Kalyani
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1731 - 1746
  • [44] THE NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE NIRMALA INDICES
    Kumar, Virendra
    Das, Shibsankar
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 120 - 136
  • [45] A NOTE ON THE NORDHAUS-GADDUM TYPE INEQUALITY TO THE SECOND LARGEST EIGENVALUE OF A GRAPH
    Abreu, Nair
    Brondani, Andre E.
    de Lima, Leonardo
    Oliveira, Carla
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) : 123 - 135
  • [46] Inequality of Nordhaus-Gaddum Type for Total Outer-connected Domination in Graphs
    Jiang, Hong Xing
    Kang, Li Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) : 607 - 616
  • [47] Determining Vulnerability of Central Networks Using Closeness and Nordhaus-Gaddum Type Relation
    Goelpek, H. T.
    Aytac, A. O.
    MATHEMATICAL NOTES, 2024, 116 (3-4) : 614 - 626
  • [48] Inequality of Nordhaus-Gaddum type for total outer-connected domination in graphs
    Hong Xing Jiang
    Li Ying Kang
    Acta Mathematica Sinica, English Series, 2011, 27 : 607 - 616
  • [49] Nordhaus-Gaddum-type relations of three graph coloring parameters
    Huang, Kuo-Ching
    Lih, Ko-Wei
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 404 - 408
  • [50] Nordhaus-Gaddum type inequality for the integer k-matching number of a graph✩
    Chen, Qian-Qian
    Guo, Ji-Ming
    DISCRETE APPLIED MATHEMATICS, 2023, 340 (21-31) : 21 - 31