On Nordhaus-Gaddum type inequalities for the game chromatic and game coloring numbers

被引:2
|
作者
Charpentier, Clement [1 ]
Dantas, Simone [2 ]
de Figueiredo, Celina M. N. [3 ]
Furtado, Ana [4 ]
Gravier, Sylvain [5 ]
机构
[1] Univ Grenoble Alpes, Grenoble, France
[2] Univ Fed Fluminense, IME, Niteroi, RJ, Brazil
[3] Univ Fed Rio de Janeiro, COPPE, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, CEFET RJ COPPE, Rio De Janeiro, Brazil
[5] Univ Grenoble Alpes, CNRS, Grenoble, France
关键词
Nordhaus-Gaddum type inequalities; Coloring game; Marking game; GRAPHS;
D O I
10.1016/j.disc.2019.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A seminal result by Nordhaus and Gaddum states that 2 root n <= chi(G) + chi((G) over bar) <= n + 1 for every graph G of order n, where (G) over bar is the complement of G and chi is the chromatic number. We study similar inequalities for chi(g)(G) and col(g)(G), which denote, respectively, the game chromatic number and the game coloring number of G. Those graph invariants give the score for, respectively, the coloring and marking games on G when both players use their best strategies. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1318 / 1324
页数:7
相关论文
共 50 条
  • [1] Nordhaus-Gaddum inequalities for the fractional and circular chromatic numbers
    Brown, J. I.
    Hoshino, R.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2223 - 2232
  • [2] The Nordhaus-Gaddum type inequalities of Aα-matrix
    Huang, Xing
    Lin, Huiqiu
    Xue, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [3] Nordhaus-Gaddum type inequalities for the kth Laplacian
    Li, Wen-Jun
    Guo, Ji-Ming
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [5] PRODUCTS OF GRAPHS AND NORDHAUS-GADDUM TYPE INEQUALITIES
    Keyvan, Nastran
    Rahmati, Farhad
    TRANSACTIONS ON COMBINATORICS, 2018, 7 (01) : 30 - 35
  • [6] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [7] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72
  • [8] A note on Nordhaus-Gaddum inequalities for domination
    Shan, EF
    Dang, CY
    Kang, LY
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 83 - 85
  • [9] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    Linear Algebra and Its Applications, 2020, 602 : 57 - 72
  • [10] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470