The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function

被引:125
|
作者
Krumholz, Mark R. [1 ,2 ]
Federrath, Christoph [1 ,2 ]
机构
[1] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT, Australia
[2] Ctr Excellence Astron Three Dimens ASTRO 3D, Canberra, ACT, Australia
基金
澳大利亚研究理事会;
关键词
galaxies: star formation; ISM: clouds; ISM: kinematics and dynamics; ISM: magnetic fields; magnetohydrodynamics (MHD); stars: formation; turbulence; MHD TURBULENCE SIMULATIONS; WIND-CLOUD INTERACTIONS; GIANT MOLECULAR CLOUDS; X-RAY-EMISSION; AMBIPOLAR-DIFFUSION; SUPERBUBBLE FEEDBACK; MAGNETOHYDRODYNAMIC TURBULENCE; GRAVITATIONAL-INSTABILITY; PROBABILITY-DISTRIBUTION; SUPERNOVA-REMNANTS;
D O I
10.3389/fspas.2019.00007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Star-forming gas clouds are strongly magnetized, and their ionization fractions are high enough to place them close to the regime of ideal magnetohydrodyamics on all but the smallest size scales. In this review we discuss the effects of magnetic fields on the star formation rate (SFR) in these clouds, and on the mass spectrum of the fragments that are the outcome of the star formation process, the stellar initial mass function (IMF). Current numerical results suggest that magnetic fields by themselves are minor players in setting either the SFR or the IMF, changing star formation rates and median stellar masses only by factors of similar to 2 - 3 compared to non-magnetized flows. However, the indirect effects of magnetic fields, via their interaction with star formation feedback in the form of jets, photoionization, radiative heating, and supernovae, could have significantly larger effects. We explore evidence for this possibility in current simulations, and suggest avenues for future exploration, both in simulations and observations.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] A Consistent Explanation for the Unusual Initial Mass Function and Star Formation Rate in the Central Molecular Zone (CMZ)
    Chabrier, Gilles
    Dumond, Pierre
    ASTROPHYSICAL JOURNAL, 2024, 966 (01):
  • [42] Magnetic fields and star formation
    Van Loo, S.
    Hartquist, T. W.
    Falle, S. A. E. G.
    ASTRONOMY & GEOPHYSICS, 2012, 53 (05) : 31 - 36
  • [43] The importance of magnetic fields for the initial mass function of the first stars
    Sharda, Piyush
    Federrath, Christoph
    Krumholz, Mark R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 336 - 351
  • [44] The Role of Magnetic Fields in Triggered Star Formation of RCW 120
    陈志维
    Ramotholo Sefako
    杨旸
    江治波
    于书岭
    尹佳
    Research in Astronomy and Astrophysics, 2022, 22 (07) : 246 - 267
  • [45] The Role of Magnetic Fields in Triggered Star Formation of RCW 120
    Chen, Zhiwei
    Sefako, Ramotholo
    Yang, Yang
    Jiang, Zhibo
    Yu, Shuling
    Yin, Jia
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (07)
  • [46] The effect of star formation history on the inferred stellar initial mass function
    Elmegreen, BG
    Scalo, J
    ASTROPHYSICAL JOURNAL, 2006, 636 (01): : 149 - 157
  • [48] Star formation in turbulent molecular clouds: the initial stellar mass function
    Fleck, Robert C.
    1600, Oxford University Press (201):
  • [49] STOCHASTIC STAR FORMATION AND A (NEARLY) UNIFORM STELLAR INITIAL MASS FUNCTION
    Fumagalli, Michele
    da Silva, Robert L.
    Krumholz, Mark R.
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 741 (02)
  • [50] Early star formation and the evolution of the stellar initial mass function in galaxies
    Larson, RB
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 301 (02) : 569 - 581