Asynchronous Brain Computer Interface using Hidden Semi-Markov Models

被引:0
|
作者
Oliver, Gareth [1 ]
Sunehag, Peter [1 ]
Gedeon, Tom [1 ]
机构
[1] Australian Natl Univ, Res Sch Comp Sci, Canberra, ACT 0200, Australia
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ideal Brain Computer Interfaces need to perform asynchronously and at real time. We propose Hidden Semi-Markov Models(HSMM) to better segment and classify EEG data. The proposed HSMM method was tested against a simple windowed method on standard datasets. We found that our HSMM outperformed the simple windowed method. Furthermore, due to the computational demands of the algorithm, we adapted the HSMM algorithm to an online setting and demonstrate that this faster version of the algorithm can run in real time.
引用
收藏
页码:2728 / 2731
页数:4
相关论文
共 50 条
  • [31] Hidden semi-Markov models for machinery health diagnosis and prognosis
    Dong, M
    He, D
    TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME, VOL 32, 2004, 2004, : 199 - 206
  • [32] On rainfall seasonality using a hidden semi-Markov model
    Sansom, John
    Thomson, Peter
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D15)
  • [33] Quantile hidden semi-Markov models for multivariate time series
    Merlo, Luca
    Maruotti, Antonello
    Petrella, Lea
    Punzo, Antonio
    STATISTICS AND COMPUTING, 2022, 32 (04)
  • [34] Quantile hidden semi-Markov models for multivariate time series
    Luca Merlo
    Antonello Maruotti
    Lea Petrella
    Antonio Punzo
    Statistics and Computing, 2022, 32
  • [35] Predictive models of human supervisory control behavioral patterns using hidden semi-Markov models
    Boussemart, Yves
    Cummings, Mary L.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (07) : 1252 - 1262
  • [36] P300 Based Brain-Computer Interface Using Hidden Markov Models
    Helmy, Salah
    Al-ani, Tarik
    Hamam, Yskandar
    El-madbouly, Essam
    ISSNIP 2008: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS, AND INFORMATION PROCESSING, 2008, : 127 - +
  • [37] Initialization of Hidden Markov and Semi-Markov Models: A Critical Evaluation of Several Strategies
    Maruotti, Antonello
    Punzo, Antonio
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (03) : 447 - 480
  • [38] Hidden semi-Markov event sequence models: Application to brain functional MRI sequence analysis
    Faisan, S
    Thoraval, L
    Armspach, JP
    Heitz, F
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 880 - 883
  • [39] Acoustic emission diagnostics of corrosion monitoring in prestressed concrete using hidden Markov and semi-Markov models
    Dubuc, Brennan
    Sitaropoulos, Konstantinos
    Ebrahimkhanlou, Arvin
    Salamone, Salvatore
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (06): : 2899 - 2916
  • [40] Acoustic emission diagnostics of corrosion monitoring in prestressed concrete using hidden Markov and semi-Markov models
    Dubuc, Brennan
    Sitaropoulos, Konstantinos
    Ebrahimkhanlou, Arvin
    Salamone, Salvatore
    Structural Health Monitoring, 2021, 20 (06) : 2899 - 2916