Image completion using prediction concept via support vector regression

被引:2
|
作者
Shih, Cho-Wei [1 ]
Lai, Tsung-Hsuan [1 ]
Chu, Hui-Chuan [2 ]
Chen, Yuh-Min [1 ]
机构
[1] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, Tainan 70101, Taiwan
[2] Nation Univ Tainan, Dept Special Educ, Tainan, Taiwan
关键词
Image completion; Support vector regression; Structure prediction; Image inpainting; OBJECT REMOVAL;
D O I
10.1007/s00138-012-0438-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image completion is a widely used method for automatically removing objects or repairing the damaged portions of an image. However, information of the original image is often lacking in reconstructed structures; therefore, images with complex structures are difficult to restore. This study proposes a prediction-oriented image completion mechanism (PICM), which applies the prediction concept to image completion using numerous techniques and methods. The experiment results indicate that under normal circumstances, our PICM not only produces good inpainting quality but it is also easy to use.
引用
收藏
页码:753 / 768
页数:16
相关论文
共 50 条
  • [31] Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression
    Wu, Yunhao
    Li, Yan
    Li, Hongxia
    Wang, Tao
    Huang, Peng
    Wu, Yiwen
    Sun, Bomin
    Pan, Yixin
    Li, Dianyou
    HELIYON, 2024, 10 (10)
  • [32] Prediction of Crude Oil Asphaltene Precipitation Using Support Vector Regression
    Na'imi, Seyyed Reza
    Gholami, Amin
    Asoodeh, Mojtaba
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2014, 35 (04) : 518 - 523
  • [33] Cyclosporine concentration prediction using clustering and support vector regression methods
    Camps-Valls, G
    Soria-Olivas, E
    Pérez-Ruixo, JJ
    Pérez-Cruz, F
    Figueiras-Vidal, AR
    Artés-Rodríguez, A
    ELECTRONICS LETTERS, 2002, 38 (12) : 568 - 570
  • [34] Prediction of daily maximum temperature using a support vector regression algorithm
    Paniagua-Tineo, A.
    Salcedo-Sanz, S.
    Casanova-Mateo, C.
    Ortiz-Garcia, E. G.
    Cony, M. A.
    Hernandez-Martin, E.
    RENEWABLE ENERGY, 2011, 36 (11) : 3054 - 3060
  • [35] Intelligent Prediction for Time Series Using Smooth Support Vector Regression
    Wang, Xiaoh
    Wu, Deh
    2008 IEEE INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2008, : 1157 - 1160
  • [36] Greenhouse Heat Load Prediction Using a Support Vector Regression Model
    Coelho, Joao Paulo
    Cunha, Jose Boaventura
    Oliveira, Paulo de Moura
    Pires, Eduardo Solteiro
    SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 2010, 73 : 111 - +
  • [37] Cable Tunnel Thermal Rating Prediction using Support Vector Regression
    Huang, R.
    Pilgrim, J. A.
    Lewin, P. L.
    Scott, D.
    Morrice, D.
    2014 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2014,
  • [38] Prediction of the solar radiation on the Earth using support vector regression technique
    Piri, Jamshid
    Shamshirband, Shahaboddin
    Petkovic, Dalibor
    Tong, Chong Wen
    Rehman, Muhammad Habib Ur
    INFRARED PHYSICS & TECHNOLOGY, 2015, 68 : 179 - 185
  • [39] Surface Hardness Intelligent Prediction in Milling Using Support Vector Regression
    Wu, Deh
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 188 - 192
  • [40] Magnetic properties prediction of NdFeB magnets by using support vector regression
    Cheng, Wende
    MODERN PHYSICS LETTERS B, 2014, 28 (23):